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1 Introduction

A growing body of asset pricing research reveals a striking gap between investors’ be-

liefs about asset prices and their observed behavior. One clear example is the markedly

lower volatility in aggregate subjective discount rates relative to objective ones: while

survey-based measures of expected returns or discount rates tend to be acyclical and

show limited correlation with price ratios (De La O & Myers, 2021; Nagel & Xu, 2023),

objective discount rates are strongly countercyclical and track aggregate price ratios

closely (Cochrane, 2011; Koijen & Van Nieuwerburgh, 2011).

The broader asset pricing consequences of this “excess rigidity” remain underex-

plored, particularly at the individual stock level. If this rigidity also arises at the firm

level, how does it affect cross-sectional pricing? These questions are further moti-

vated by practical and pedagogical evidence suggesting investors often underestimate

discount rate volatility.1

This paper proposes and tests the “Constant Discount Rate” (CDR) Hypothesis,

asserting that some investors systematically underestimate discount rate fluctuations

when valuing individual stocks. The findings indicate that such underestimation

indeed manifests at the firm level and provides a unifying explanation for a broad set

of well-known cross-sectional pricing anomalies.

I begin by further refining the CDR hypothesis, emphasizing its implications for both

time-series and cross-sectional variations in stock valuations and returns. Specifically,

the hypothesis encompasses two main dimensions: how CDR investors adjust discount

rate estimates in real time and how they perceive future discount rate variability. While

the former leads to direct, time-series predictions, the latter induces misvaluation

differences across firms, generating cross-sectional predictions.

The time-series implications follow directly from the the hypothesis’ core assump-

1Widely used valuation frameworks (e.g., (Damodaran, 2012; Koller, Goedhart, Wessels, et al., 2010))
typically assume constant discount rates, and surveys highlight limited practitioner focus on discount
rate variability (Mukhlynina & Nyborg, 2016).

1



tion, leading to two key direct empirical predictions. First, because CDR investors

underestimate discount rate variability, their subjective estimates should exhibit lower

volatility over time compared to objective discount rates, especially among stocks with

higher discount rate volatility.

I use sell-side analysts’ return forecasts as my primary proxy for CDR investors’

subjective discount rate estimates. These forecasts uniquely provide firm-level discount

rate estimates across a broad cross-section of companies — an advantage rarely found

elsewhere. To compare these estimates, I use conditional CAPM-based expected returns,

estimated with a 90-day rolling beta, as my primary measure of objective discount

rates.2

As a direct test, I compare the volatility of individual analysts’ return forecasts with

that of the CAPM-based estimates over the same calendar year. The results support

the CDR hypothesis: objective discount rates are more volatile than subjective ones,

indicating an underestimation of discount rate volatility, particularly among stocks with

higher objective discount rate volatility. Quantitatively, among stocks in the highest

volatility tercile, more than three-quarters of analyst-firm-year observations show lower

subjective volatility. Even in the lowest volatility tercile, over 62% of the observations

exhibit lower subjective volatility.

Analysts are relatively sophisticated professionals whose forecasts can influence

market outcomes (Kothari, So, & Verdi, 2016). If enough investors exhibit similar

underestimation as analysts, we should observe a negative relationship between time-

series changes in objective discount rates and subsequent stock returns — a second

time-series prediction of the hypothesis. Specifically, the CDR predicts that when

objective discount rates rise (fall), the market under-adjusts, leading to temporary

over-pricing (under-pricing) and thus lower (higher) future returns, especially for firms

with higher discount rate volatility.

I test this prediction using firm-level panel regressions of next-month excess returns

2I consider alternative measures of objective expected returns in asset pricing tests in Appendix E.3.
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on current conditional CAPM-based betas, controlling for firm and month fixed effects

as well as various firm-level characteristics. The results again support the hypothesis:

conditional beta strongly and negatively predicts next-month returns. Mirroring the

results from the first prediction, this effect is most pronounced among firms in the

highest (top-tercile) discount rate (CAPM-beta) volatility, where a 10% increase in

conditional beta corresponds to a 3-basis-point drop in next-month excess returns.

Next, I examine the cross-sectional implications of the CDR hypothesis, which

posits that firms with different fundamentals will be misvalued to varying degrees if

investors underestimate discount rate volatility. Drawing on a valuation model that

incorporates discount rate dynamics, I demonstrate that companies with both higher

discount rate volatility and greater expected future cash flow growth (or longer cash

flow duration) are especially susceptible to CDR-induced misvaluation. Intuitively,

stable, well-established businesses (e.g., McDonald’s) have relatively stable risk profiles,

leaving less room for discount rate underestimation to matter, whereas cyclical or

rapidly evolving firms (e.g., Tesla) do not. Furthermore, because underestimations

compound over time, firms with extended payout horizons—those anticipating more

distant cash flows—are particularly vulnerable to persistent misvaluation stemming

from CDR.

As a first cross-sectional test, I examine whether a firm-level measure of CDR-

induced misvaluation predicts stock returns. Specifically, I define a novel price-based

measure as the difference between the implied cost of capital (ICC) and a conditional

CAPM-based expected return.3 The ICC — derived from a discounted cash flow

formula — assumes a constant discount rate across all future periods, an approach

previously cautioned in the literature (Hughes, Liu, & Liu, 2009) but directly aligned

with the CDR hypothesis. Empirically, this measure increases with firms’ discount rate

volatility and cash flow duration, consistent with CDR.

3I do not use the difference between sell-side analysts’ return forecasts and objective discount rates
because analysts represent only a portion of market participants, making a price-based measure more
appropriate.
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The results strongly support the CDR hypothesis: this new misvaluation measure

robustly predicts stock returns in the cross-section. Stocks in the highest (top-quintile)

overvaluation group underperform those in the lowest (bottom-quintile) group by a

Fama-French 5-factor alpha of 8% per year (t-stat = 5.30). This effect is economically

large, persists for up to five years, and appears even within the S&P 500 universe.

Moreover, the findings are robust to alternative specifications of discount rate models

and are not driven by biases in analysts’ cash flow forecasts.

Second, the CDR hypothesis posits that CAPM alphas stem entirely from investors’

underestimation of discount rate volatility. In an ideal setting—where CDR is the only

mispricing source and our misvaluation measure fully captures it — a factor-mimicking

portfolio based on this measure would, in principle, explain all cross-sectional anoma-

lies.

Empirically, I find that CDR indeed provides a powerful explanation for a large

set of anomalies. Specifically, the misvaluation factor accounts for the CAPM alphas

of 12 major anomalies, including 9 of the 11 studied by Stambaugh and Yuan (2017)

(e.g., investment, profitability, beta, and idiosyncratic volatility). Crucially, it is derived

primarily from analysts’ forecasts and market prices, thereby avoiding any direct

inclusion of anomaly-defining characteristics. Moreover, the characteristics used to

define these anomalies predict future cash flow growth and/or discount rate volatility

in ways consistent with CDR, consistent with the prescribed channel.

Finally, I examine whether the CDR hypothesis also applies to the cross-section of

analysts’ discount rate estimates. Indeed, analysts’ consensus return forecast errors

rise with both discount rate volatility and expected cash flow growth, reinforcing the

connection between discount rate misperceptions and return anomalies.

Overall, the two time-series tests directly verify the CDR premise using both sub-

jective discount rate estimates and individual stock prices. Meanwhile, the three

cross-sectional tests indicate that underestimating discount rate volatility unifies var-

ious cross-sectional return anomalies and explains systematic variations in analysts’
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forecast errors.

This paper contributes to a growing literature that uses survey-based subjective

expectations to understand asset prices (see, for example, Greenwood & Shleifer, 2014,

as well as Adam & Nagel, 2023 for a survey). One strand of this literature focuses on

short-term (Bouchaud, Krueger, Landier, & Thesmar, 2019) and long-term (Bordalo,

Gennaioli, Porta, & Shleifer, 2024, 2019) cash flow expectations. These papers propose

that investors’ cash flow expectations are biased and show how such biases can help

explain various time-series and cross-sectional pricing anomalies, holding subjective

discount rates fixed.

Another strand of the literature investigates how subjective discount rates vary over

time at the aggregate level (Dahlquist & Ibert, 2024; Jiang, Lustig, Van Nieuwerburgh,

& Xiaolan, 2024). For instance, De La O and Myers (2021) and Renxuan (2020) find

that subjective discount rates comove less with aggregate price–earnings ratios than do

subjective cash flow expectations, while Nagel and Xu (2023) document that subjective

discount rates exhibit insufficient cyclicality and volatility compared with their objective

counterparts across a broad range of asset classes.

This paper bridges these two strands by investigating whether underestimation

of discount rate dynamics also arises at the firm level and whether it can drive cross-

sectional mispricing. In contrast to studies in the first strand, which focus on biased

cash flow expectations, my approach starts with the assumption of unbiased firm-

level cash flow expectations and explores whether investors’ discount rate biases can

generate cross-sectional return anomalies. Compared to the second strand, which

centers on aggregate subjective discount rate time-series fluctuations, I examine whether

similar underestimation manifests at individual stock level and its implications on

cross-sectional pricing.

The paper also contributes to a large literature that seeks to explain cross-sectional

asset pricing anomalies by relaxing the full-information rational expectation assumption

(N. Barberis, Shleifer, & Vishny, 1998; Daniel, Hirshleifer, & Subrahmanyam, 1998; Hong

5



& Stein, 1999). Of particular relevance are recent works that jointly examine both asset

prices and investors’ subjective return expectations (Adam, Marcet, & Beutel, 2017;

N. Barberis, Greenwood, Jin, & Shleifer, 2015; Collin-Dufresne, Johannes, & Lochstoer,

2017; Hirshleifer, Li, & Yu, 2015; Nagel & Xu, 2022), which primarily focus on aggregate

time-series variations in asset prices and subjective expected returns. By contrast, this

paper proposes a hypothesis about firm-level subjective discount rate dynamics and

tests it using both time-series and cross-sectional data on individual stock pricing and

subjective expectations.

Admittedly, this paper does not explore in detail why investors underestimate

discount rate volatility at the individual stock level. Possible explanations include

parameter learning (Li, Van Nieuwerburgh, & Renxuan, 2023; Nagel & Xu, 2022),

bounded rationality stemming from the complexity of valuation (Simon, 1956), or

behavioral biases (N. C. Barberis, Jin, & Wang, 2020). Understanding these mechanisms

is an important avenue for future research.

The rest of the paper proceeds as follows. Section 2 develops the hypothesis and

outlines the testable empirical predictions. Section 3 describes the data and empirical

measures, followed by the results in Section 4. Finally, Section 5 concludes.

2 Hypothesis Development

The Constant Discount Rate (CDR) hypothesis posits that some investors (“CDR in-

vestors”) underestimate discount rate variability when valuing individual stocks, lead-

ing to biased expectations and return predictability (i.e., “asset pricing anomalies”).

The CDR hypothesis has two dimensions: it affects how CDR investors adjust

discount rate estimates in real time and how they perceive future discount rate variability.

The former produces direct, time-series predictions, while the latter drives misvaluation

differences across firms, resulting in cross-sectional predictions. Below, we elaborate on

these two aspects further and present their respective testable predictions.
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2.1 Under-Adjusting Discount Rates in Real Time

First, because CDR investors believe discount rates vary less than they actually do, they

under-adjust their discount rates in real time. This implies lower discount rate volatility

for the subjective discount rate estimates of CDR investors, as stated in Prediction 1.

Prediction 1 (Volatility of Subjective vs. Objective Discount Rates). The subjective

discount rate estimates by CDR investors for a firm will demonstrate lower volatility over time

compared to the objective discount rates for the same firm within the same timeframe.

The intuition behind the prediction is straightforward. Testing this prediction re-

quires empirical measurements of the subjective discount rates of the CDR investors

and the corresponding objective discount rates, as well as their volatility. I propose to

use sell-side analysts’ return expectations at the firm level as the main measure for sub-

jective discount rate estimates of the CDR investors. The details of these measurements

are outlined in Sections 3.2.1 and 3.2.2.

Beyond conducting direct tests on discount rate estimates, the hypothesis has

direct predictions regarding the time-series relationship between objective discount

rate variation and future stock returns, if there exists a substantial number of CDR

investors in the market. Intuitively, the CDR investors’ biased expectations will cause

them to incorrectly value certain assets, leading to excessive buying or selling, and

consequently, causing market mispricing. In Appendix A, I confirm this intuition

through a model featuring a portion of investors with biases in their expected return

estimates. The model shows these biases will be correlated with stocks’ future CAPM

alpha’s.4 Prediction 2 below presents the implications on individual stock returns when

this bias is due to underestimation of discount rate volatility.

4The model features a multi-asset economy where a proportion of biased investors (CDR investors)
interact with rational, risk-averse investors (arbitrageurs). This model is based on Kozak, Nagel, and San-
tosh (2018), and the expectation biases are in general form, applicable to any biased return expectations,
not only the CDR-implied biases.
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Prediction 2 (Discount Rate Variation and Future Returns). A temporary increase (de-

crease) in a stock’s objective discount rate should result in lower (higher) subsequent returns of

the stock.

The prediction is intuitive. Since CDR investors fail to update their discount rate

estimates promptly, and they contribute to market pricing, stocks with a temporary

increase in their objective discount rate are likely to experience temporary overpricing,

resulting in lower subsequent returns.

The under-adjustment of estimates by CDR investors should have cross firm im-

plications too. We should expect the effects of Prediction 1 and 2 to be stronger for

stocks with relatively higher volatility in discount rates — when the actual discount

rate variation for stocks is minimal, the potential for mispricing is also limited. I test

these in the empirical section. Next, I discuss more cross-section predictions, but from

the dimension of under-estimating future discount rate variation.

2.2 Under-estimating Future Discount Rate Variation

As the second aspect of the hypothesis, the CDR assumption posits that investors fail

to fully account for the variability in discount rates over \textit{future horizons}. This

underestimation of future discount rate fluctuations leads to biases in investors’ current

estimates of discount rates when valuing future cash flows of stocks. Since different

stocks have different expected cash flows, the CDR hypothesis implies how these biases

would vary with which firm-level characteristics.

To illustrate how the CDR leads to valuation biases that differ among firms, consider

valuing an asset i that pays risky cash flows in the next two periods, ci,t+1 and ci,t+2.

Suppose company i is expected to launch a new business line at the end of Period

1, significantly altering its risk profile in Period 2. This change necessitates different

discount rates for each period, µi,t and µi,t+1, respectively. The correct valuation should
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therefore be:

Vi,t =
Et(ci,t+1)

µi,t
+

Et(ci,t+2)

µi,t+1
(1)

where Et(∗) represents unbiased expectations.5

CDR investors, who do not account for the change in risk profile between periods,

apply a constant discount rate µ̃i,t = µ̃i,t+1 ̸= µi,t+1, resulting in the misvaluation:

Ṽi,t =
Et(ci,t+1)

µ̃i,t
+

Et(ci,t+2)

µ̃i,t
(2)

and a bias bi,t =
Ṽi,t
Vi,t

̸= 1.

For a different firm j, the magnitude of the bias may differ because its discount rate

dynamics are different, i.e., µ̃j,t − µj,t+1 ̸= µ̃i,t − µi,t+1. For example, firm j may operate

in a much more stable manner, with no plans to launch new business lines.

Despite its simplicity, this example mirrors real-life scenarios. Firm j, for instance,

could represent a well-established consumer goods company with a stable risk profile

and consistent demand. Consequently, applying relatively steady discount rates µ̃j,t for

all future cash flow periods will closely align with its fair valuation. Conversely, Firm i

might exemplify a company operating in a volatile industry with an untested business

model, leading to larger valuation biases under the CDR assumption. Prediction 3

below formalizes this intuition on this cross-sectional prediction.

Prediction 3 (CDR-Induced Misvaluation and Cross-Sectional CAPM Alpha). An em-

pirical measure of CDR-induced misvaluation, b̂i,t, constructed based on the difference between

the discount rates used by CDR investors and the objective discount rates, should negatively

predict a stock’s CAPM alpha.

To test the prediction, I use the implied cost of capital (ICC) — a commonly used

measure for estimating discount rates — as a proxy for CDR investors’ discount rate

5Here I assume that expected cash flows and discount rates are uncorrelated for simplicity. Allowing
for correlations would also introduce biases from the CDR assumption, as discussed in Hughes et al.
(2009).
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estimates. A crucial assumption in estimating ICC is that the discount rate remains

constant across future cash flow horizons for all firms. This assumption mirrors the key

mistake made by CDR investors, and when paired with a measure of objective discount

rates, it captures CDR-implied misvaluation that varies across firms. I describe this

measure in more detail in Section 3.2.4.

When assets distribute cash flows over more than two periods, the length of their

payout horizons influences valuation biases. In Appendix B, I employ a valuation

model for long-term assets with cash flows extending to infinite periods. The analysis

reveals that, in addition to firms with higher discount rate fluctuations — as shown in

the previous two-period example — companies with higher expected cash flow growth

or longer payout horizons experience greater misvaluation due to CDR effects.

To understand the intuition behind this effect, it is important to recognize that

CDR-induced biases influence discount rate estimates in every valuation period, accu-

mulating over the entire payout horizon. Different stocks have varying effective payout

horizons: firms with faster expected growth possess longer effective payout horizons

(cash flow duration) than those with slower growth. Consequently, all else being equal,

firms with higher expected growth accumulate these biases more significantly, resulting

in more pronounced misvaluation.

Since many asset pricing anomalies are linked to these two fundamental charac-

teristics, the CDR hypothesis can potentially explain a wide range of asset pricing

anomalies.6 I formalize this intuition in Prediction 4 below.

Prediction 4 (CDR-Induced Mispricing and Cross-Sectional Anomalies). A factor-

mimicking portfolio constructed from CDR-induced misvaluation should explain a range of

asset pricing anomalies. Furthermore, for these anomalies, firm characteristics that predict

higher (lower) future abnormal returns should be negatively (positively) related to the firm’s

discount rate volatility and/or cash flow growth.
6Gormsen and Lazarus (2023) show that firms with lower expected cash flow growth or shorter cash

flow durations are common among various asset pricing anomalies, as in Prediction 4. A. Y. Chen and
Zimmermann (2021) demonstrate that a large set of anomalies are related to firms’ return volatility.
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A factor-mimicking portfolio is a commonly used to tool in asset pricing. It is a

long-short portfolio based on sorting stocks into CDR-induced misvaluation measure.

This portfolio is expected to capture systematic mispricing in the cross-section of stocks.

Finally, beyond data on asset prices and returns, the CDR hypothesis should imply

consistent patterns in data on subjective expectations. I test this in Prediction 5.

Prediction 5 (Expectation Errors and Firm Fundamentals). The errors in CDR investors’

discount rate estimates increase with firms’ expected cash flow growth and discount rate

volatility.

Together, these predictions provide a comprehensive framework for understanding

how underestimating future discount rate variability can lead to both mispricing

and cross-sectional asset pricing anomalies. The next section discusses the empirical

methods used to test these hypotheses.

3 Data and Empirical Measurement

3.1 Data

I use the Institutional Broker’s Estimate System (I/B/E/S) summary file for analyst

earnings and price targets forecasts. I use COMPUSTAT annual data for balance sheet

variables and CRSP for shares outstanding and share adjustment as well as price- and

return-related variables. More detailed descriptions of the data sources are found in

Appendix C.

The main dataset, merged between these two main sources of daata therefore differs

from the more commonly employed CRSP-COMPUSTAT universe. It covers only about

40% of the number of firms and is restricted to larger firms. This reflects the fact that

analysts typically focus on more established companies, with the results not including

microcaps, which are less frequently covered by analysts.
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3.2 Empirical Measures

3.2.1 Subjective Beliefs on Discount Rates

To test the CDR hypothesis regarding subjective expectations, I use sell-side analysts’

forecasts as a proxy for investor beliefs about future discount rates. The key advan-

tage of this dataset is that it provides estimates on return expectations at the firm level.

Moreover, they seem to align with the behaviors expected from CDR investors, given

evidence that they are systematically biased (Bradshaw, Brown, & Huang, 2013), corre-

late with cross-sectional anomalies (Engelberg, McLean, & Pontiff, 2019), and exhibit

notable sensitivity to empirical risk proxies (Dechow & You, 2020).

I calculate subjective discount rates based on sell-side analysts’ return expectations,

using the formula: price targets divided by current prices, minus 1. The volatility of

these return expectations serves as a proxy for the volatility of subjective discount rates.

Appendix IA.C provides detailed information about the dataset and the construction of

these measures.

I also define firm-level return expectation biases as the difference between the

12-month realized stock price returns and the sell-side analysts’ consensus return

expectations at the end of each quarter. The average bias for each firm is then calculated

as the time-series average of these firm-level biases. These biases are primarily used in

the tests for Prediction 5.

3.2.2 Objective Discount Rates

To measure objective discount rates, denoted by µ̂i,t, I use a conditional CAPM model.

I calculate the expected return by multiplying each firm’s beta by a constant market

risk premium of 6.5%, which is the average realized excess return in our sample.7

µ̂i,t := β̂i,t × 0.065 (3)

7The debate on the true expected return continues in the literature. I follow a similar approach to van
Binsbergen and Opp (2019).
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I estimate conditional beta, β̂i,t, using rolling 90-day regressions based on daily stock

and market excess returns. The rolling window method allows the beta to adapt to

the most recent data, providing a dynamic measure of systematic risk. The choice of

90-day window is also slightly longer than the average frequency an analyst would

update their forecasts, which is about two weeks. For each regression, at least 45 days

of data are required; otherwise, the observation is excluded. To measure the volatility

of objective discount rates, I calculate the rolling 250-day volatility based on the daily

conditional beta estimates.

I use this measure of objective discount rates in testing both Prediction 1 and in

constructing the firm-level misvaluation measure when testing Prediction 3. To verify

results of the asset pricing tests are robust to different discount rate measure, Appendix

E.3 also explores alternative ways to measure objective discount rates, such as multi-

factor models.

3.2.3 Cash Flow Payout Horizon

For a firm’s payout horizon, I use analysts’ long-term growth expectations (LTG) as

the primary proxy for equity duration. This follows from the approach of Gormsen

and Lazarus (2023). The rationale is that higher long-term growth expectations imply a

lower payout horizon, which corresponds to a longer cash flow duration. This reflects

the idea that companies with higher growth potential may retain earnings longer,

leading to extended future payouts. In addition to this, I consider anomaly returns

based on the equity duration measures discussed by Dechow, Sloan, and Soliman

(2004a), Weber (2018), and Gonçalves (2019) in the asset pricing tests.

3.2.4 Firm-level CDR-induced Misvaluation

To quantify the misvaluation caused by CDR investors, I construct a measure based on

the CDR investment process discussed in Section 2. Intuitively, this measure should cap-

ture the difference between the time-varying objective discount rates and the discount
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rates assumed by CDR investors, who underestimate the its volatility.

To approximate CDR investors’ discount rate estimates, Πi,t, I use the firm-level

implied cost of capital (ICC). The ICC is derived by projecting future cash flows and

using historical prices under the assumption of a constant discount rate. To demonstrate

how ICC inherently ignores discount rate variation, consider a simplified example,

valuing a single cash flow Xi,t+k received k periods from now. The true price of the

asset at time t, given dynamic discount rates µi,t+j, is:

Pk
i,t =

E(Xi,t+k)

∏k−1
j=0 (1 + µi,t+j)

In contrast, the ICC estimate Πi,t assumes a constant discount rate across all future

periods and backs out the empirical estimate through the following pricing formula:

Pk
i,t =

E(Xi,t+k)

(1 + Πi,t)k−1

This implicit assumption means the ICC will differ from the true average discount rate

whenever discount rates vary over time.

For empirical analysis, I use the ICC measure developed by Pástor, Sinha, and

Swaminathan (2008), denoted as Π̂i,t.8 Diffrerent from the single cash flow example

above, the ICC measure accounts for multiple future cash flow horizons but crucially

assumes a constant discount rate for all horizons. This limitation has been noted in

prior research (Hughes et al., 2009; Wang, 2015). Nevertheless, ICC remains widely

used in practice and is featured in standard finance textbooks such as Damodaran

(2012).

Estimating firm-level misvaluation requires six firm-level variables, one industry-

level variable, and one aggregate variable: 1. Analysts’ consensus forecasts for a firm’s

earnings for the current fiscal year (FY1), next fiscal year (FY2), and the fiscal year

8To ensure robustness, I also consider alternative models like Gebhardt, Lee, and Swaminathan (2001),
which yield similar findings.
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thereafter (FY3); 2. Analysts’ consensus long-term growth forecast (LTG); 3. The payout

ratio, calculated as the firm’s total dividends from the previous year divided by its net

income; 4. The firm’s market beta; 5. The average LTG across 48 Fama-French industry

classifications; 6. The long-term average GDP growth, ranging from 6% to 7% over

the 35-year sample. Using these inputs, I compute the ICC, Π̂i,t . More details on the

estimation procedure are provided in Appendix D.

I define the CDR-induced misvaluation measure, α̂i,t, as the difference between the

conditional CAPM-implied discount rate µ̂i,t (as defined in Equation 3) and the ICC,

Π̂i,t:

α̂i,t = µ̂i,t − Π̂i,t (4)

This measure quantifies how much the discount rate assumed by CDR investors de-

viates from the time-varying discount rate, which reflects true market conditions. A

positive α̂i,t suggests that CDR investors are underestimating the firm’s value, while a

negative α̂i,t indicates overestimation.

This is the primary variable used in my asset pricing tests for Prediction 3, which

states this measure should be positively related to stocks’ future CAPM alphas.9 In

Appendix E.3, I provide robustness checks using alternative measures of µ̂i,t.

An important point is that the estimation of firm-level misvaluation, α̂i,t, does not

incorporate anomaly variables that we aim to explain in testing Prediction 4, other

than β̂i,t. Despite β̂i,t being mechanically positively correlated with the measure α̂i,t,

the misvaluation measure still explains the ’low-beta’ anomaly, where a firm’s beta

negatively predicts future returns. This indicates that the explanatory power of the

misvaluation-based portfolio for a broad set of anomalies is not mechanically driven by

including anomaly characteristics in its construction.

One potential concern is that analysts’ cash flow forecasts, used to calculate the ICC,

may be biased. In Appendix E.1 , I show that the results are robust when controlling for

9Equations (18) and (21) in the Appendix provide more clarification for this relationship.
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ex-ante biases in these forecasts, using machine-learning methods to derive unbiased

estimates, and even when including ex-post realized cash flow forecast errors. This

finding is consistent with previous work by Hou, van Dijk, and Zhang (2012) and

Wang (2015), which demonstrates that analysts’ forecasts perform similarly to statistical

models, particularly for large-cap firms.

One potential concern is that analysts’ cash flow forecasts, used to calculate the ICC,

may be biased. In Appendix E.1, I show that the results are robust when controlling for

ex-ante biases in these forecasts, using machine-learning methods to derive unbiased

estimates, and even when including ex-post realized cash flow forecast errors.10 These

results suggest that the cash flow forecast biases from analysts are not the primary

driver for the asset pricing results I document.

4 Empirical Results

This section presents the empirical results for each of the testable predictions detailed

in Section 2. Each subsection addresses the results for the five predictions, respectively.

4.1 Subjective vs. Objective Discount Rate Volatility

This subsection evaluates Prediction 1, which posits that analysts systematically under-

estimate the volatility of discount rates compared to the objective measures implied

by the conditional CAPM. Subj. DR Vol. refers to the volatility of analysts’ subjec-

tive discount rate estimates, while Obj. DR Vol. represents the volatility implied by

the conditional CAPM. Comparing these measures allows us to assess whether ana-

lysts’ subjective beliefs align with or deviate from objective risk-based expectations,

providing evidence for the CDR hypothesis.

Specifically, at the end of each calendar year, I compute the difference between

10This finding is consistent with previous work by Hou et al. (2012) and Wang (2015), which demon-
strates that analysts’ forecasts perform similarly to statistical models, particularly for large-cap firms.
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individual analysts’ estimates of Subj. DR Vol. and the corresponding Obj. DR Vol over

the same period. A higher difference indicates that analysts’ own estimates of discount

rates have lower volatility compared to the volatility implied by the conditional CAPM.

Figure 1: Comparison of Conditional-CAPM and Analyst Expected Return Volatility:
High Beta Volatility vs. Low Beta Volatility Stocks

Median (Bottom): 0.03 

Prob > 0 (Bottom): 0.62

Median (Top): 0.24 

Prob > 0 (Top): 0.78

Bottom Tercile (low beta vol)

Top Tercile (high beta vol)
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Notes: The figure shows histograms of the differences between the conditional-CAPM implied
ER volatility and the analysts’ ER volatility for stocks with low and high conditional-CAPM
implied ER volatility. At each calendar year-end, stocks covered by analyst forecasts are ranked
into terciles based on their conditional beta volatility, calculated using the past 252 days of a
stock’s conditional beta estimates, estimated using the rolling 90-day stock daily excess returns
. The conditional-CAPM implied ER is computed as the conditional beta multiplied by 0.065,
with ER volatility computed over 252 days and annualized. Analyst ER volatility is calculated
by taking the time series of all return forecasts estimates issued by a given analyst within
the year, computing the volatility of these estimates, and annualizing it. Both the analyst ER
volatility and the conditional-CAPM implied ER volatility are winsorized at 1% and 99% before
taking the difference.
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To illustrate the results, Figure 1 presents histograms of these differences for stocks

in the lowest and highest terciles of Obj. DR Vol., along with the median difference

and the proportion of cases where Subj. DR Vol. exceeds Obj. DR Vol. Notably, the

figure reveals that analysts systematically underestimate volatility, with this bias being

more pronounced for stocks with higher Obj. DR Vol. For stocks in the lowest Obj. DR

Vol. tercile, the median difference is 0.03, with Subj. DR Vol. exceeding Obj. DR Vol. in

about 62% of the observations. For stocks in the highest Obj. DR Vol. tercile, the median

difference is 0.24, with Subj. DR Vol. higher in 78% of the cases. These findings confirm

that analysts systematically underestimate the volatility of discount rates, especially for

stocks with higher objective volatility, as predicted by the CDR hypothesis.

Building on these results, we turn to Prediction 2, which examines how time-series

variations in discount rates affect future stock returns, particularly for stocks with

different levels of Obj. DR Vol.

4.2 Discount Rate Time-Series Variation and Future Returns

To test Prediction 2 , I run the panel regression:

rex
i,t+1 = αi + αt + λβ̂i,t + δ′Controlsi,t + ϵi,t+1 (5)

where rex
i,t+1 is stock i’s next monthly excess return over the risk-free rate, and β̂i,t

is the stock’s "Cond(itional) Beta," estimated from the previous 90 trading days of

excess returns. The regressions include firm (αi), month (αt) fixed effects and firm-level

characteristics as controls. I run the regressions for the full sample, as well as for

subsamples divided into high and low beta volatility terciles. According to the CDR

hypothesis, we expect negative coefficient estimates for λ, particularly in the high beta

volatility tercile, reflecting the mispricing caused by CDR investors’ failure to adjust for

discount rate dynamics.

Table 1 reports the results of the panel regression. In the full sample (Column 1), the
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coefficient on conditional beta (λ = −0.668) is significantly negative, indicating that

a 10% increase in conditional beta predicts a 0.0668 percentage point drop in future

monthly excess returns. This substantial negative relationship underscores the impact

of discount rate variation on future returns, consistent with the CDR hypothesis that

rising discount rates, unaccounted for by CDR investors, lead to lower future returns at

individual stock level.

Table 1: Conditional Beta variation and future stock returns

Fwd. 1-month Excess Return (pct)

Full Sample High Beta Vol Low Beta Vol High Beta Vol Low Beta Vol

(1) (2) (3) (4) (5)

Cond. Beta −0.668∗∗∗ −0.762∗∗∗ −0.273 −0.369∗∗∗ 0.056
(0.155) (0.141) (0.186) (0.132) (0.202)

Firm FE Y Y Y Y Y
Time FE Y Y Y Y Y
Controls N N N Y Y
Observations 904,577 296,460 298,879 226,519 198,027
Adjusted R2 0.118 0.101 0.219 0.114 0.234

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The table reports the estimated coefficient λ from Regression 5 Model (1) estimates the regression
for the full sample. Models (2) and (3) estimate the regression for firms whose conditional beta
volatility (calculated based on the previous 252 daily betas) falls within the top and bottom
terciles, respectively. Models (4) and (5) include firm-level characteristics as controls (Controlsi,t),
which consist of the logarithm of market capitalization, book-to-market ratios (Fama & French,
1992), asset growth (Cooper, Gulen, & Schill, 2008), and profitability (Novy-Marx, 2013).

The effects are more pronounced among stocks with higher discount rate volatility.

Specifically, in Column (2), for stocks in the top tercile of Obj. DR Vol., the coefficient

on conditional beta becomes more negative (λ = −0.762) compared to the full-sample

estimate. In contrast, the low beta volatility group (Column 4) exhibits a much weaker

and statistically insignificant relationship (λ = −0.273). This pattern remains consistent

even after including firm-level controls, although the coefficient for the high beta volatil-

ity group slightly decreases to (λ = −0.369). These results support the CDR hypothesis,

suggesting that stocks with higher Obj. DR Vol. are more prone to mispricing due to

19



CDR investors underestimating discount rate volatility.

Overall, the empirical results in this subsection confirm that the temporary variation

of Objective DR. leads to predictable future returns of individual stocks, consistent

with Prediction 2. Additionally, stocks exhibiting higher Obj. DR Vol. demonstrate a

more pronounced pattern of mispricing, which aligns with intuition of the CDR and

the empirical evidence observed in the subjective expectation data shown in Figure 1.

4.3 CDR-Implied Misvaluation and the Cross-Section of CAPM Alphas

This subsection displays the results of Prediction 3. Prior to this, I will demonstrate the

empirical characteristics of the CDR-implied isvaluation measure first before presenting

the asset pricing results.

4.3.1 Empirical Properties of the Misvaluation Measure

I estimate the misvaluation measure following the steps in Section 3.2.4, which involves

estimating ICC as detailed in Appendix D. Panel (a) in Table 2 presents the summary

statistics for the resulting misvaluation measure and Table 10 in the Appendix provides

detailed summary statistics for variables used to constructing the measure and the ICC.

As indicated Table 2a, most of the average firm-level misvaluations exhibit a neg-

ative sign. Although the absolute level of the measure is not essential for our cross-

sectional results, this negative level provides insights about the shape of the objective

term structure of discount rates. Specifically, it indicates the discount rates at longer

horizons are greater than short-term horizon, and greater than the subjective discount

rates assumed by CDR investors, who ignore the future dynamics. In fact, this upward-

sloping term structure of objective discount rates are consistent with the alibration

results from Ang and Liu (2004).
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Table 2: Empirical Distributions of Key Variables for Misvaluation (α̂i,t)

The table presents the empirical distributions of the misvaluation measure defined in
Equation (4). The data consists of firm-level data from 1986-01 to 2018-12. Empirical
distributions in Panel (a) and the correlations in Panel (b) are based on average variable
values over the entire time series for each firm. The term “ts.sd(α̂i,t)” refers to the
standard deviation of the quarterly misvaluation measure for each firm over its history.
“N” represents the number of firms. In Panel (b), rank correlations are Spearman rank
correlations. Panel (c) presents panel regression results based on firm-month data with
month fixed effects.

(a) Empirical Distribution of E(α̂i,t)

variable mean std min p25 median p75 max N
E(αi

t) -0.080 0.072 -0.634 -0.098 -0.064 -0.040 0.059 7205.000
ts.sd(αi

t) 0.026 0.018 0.000 0.015 0.023 0.033 0.200 7205.000

(b) Rank Correlation Between E(α̂i,t) and Firm
Characteristics

corr(αi, σβi) corr(αi, gi) corr(σβi , gi)
-0.357 -0.469 0.394

(c) Panel Regressions: Next Quarter Misvaluation (α̂i,t+3) and Firm Characteristics

Dependent variable:

α̂i,t+3

(1) (2) (3)

σβi,t −0.096∗∗∗ −0.062∗∗∗

(0.005) (0.005)

gi,t −0.295∗∗∗ −0.253∗∗∗

(0.014) (0.014)

Observations 815,733 876,800 815,733
R2 0.085 0.127 0.151
Adjusted R2 0.085 0.126 0.151
Residual Std. Error 0.086 (df = 815390) 0.084 (df = 876363) 0.083 (df = 815389)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Furthermore, the measure shows significant cross-firm variation. Specifically, Table

2a indicates that the CDR-based misvaluation has a cross-sectional standard deviation

exceeding 7% annually.11 In comparison, there is considerably less variation over time,

11Note that the statistics in Table 2 may underestimate the extent of cross-sectional disparity in
misvaluation of dynamically sorted portfolios. This primarily occurs because these portfolios rebalance
by selecting stocks according to their misvaluation rankings each period, further increasing the dispersion
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indicating the measure’s high persistence. As depicted in the second row of Panel (a),

the average quarterly volatility of firm-level misvaluation is 2.6%, which is about 4.6%

annually.

This persistence in misvaluation is further supported by the high serial correlation

coefficient. According to Table 10, an annual pooled panel regression reveals that α̂i,t

possesses an AR(1) coefficient of 0.948 (standard error 0.006, clustered by firm and

year), indicating strong persistence.12 A contributing factor to this persistence is the

implied cost of capital, Π̂i,t, which has an AR(1) coefficient of 0.92 based on quarterly

data. These findings suggest that the CDR-induced market mispricing may also exhibit

persistence, a topic explored further in Section 4.3.3.

Results in Panels (b) and (c) of Table 2 confirm the validity of the measure: the

variations in the misvaluation measure are indeed influenced by the firms’ discount rate

volatility and expected cash flow growth, as predicted by the CDR hypothesis. Table

2b illustrates the rank correlation between the firm’s average misvaluation and their

average characteristics. Firms with higher discount rate volatility and higher expected

cash flow growth tend to have lower average firm α̂i,t, aligning with the prediction

that CDR investors more significantly misvalue these firms. Additionally, Table 2c

presents results from panel regressions where the next quarter α̂i,t+3 is regressed on

the firm-level characteristics. The R-squared and the estimated coefficients support

the measure’s validity and indicate that each of these two characteristics provides

incremental explanatory power for the variation in α̂i,t.

4.3.2 Misvaluation Sorted Portfolios

This section evaluates Prediction 3 of the CDR hypothesis, which suggests that a

stock’s misvaluation measure, α̂i,t, should be a positive predictor of its CAPM alpha.

To test this, I classify stocks by their misvaluation measure and analyze the average

after the rebalancing.
12This suggests a half-life exceeding 13 years for the misvaluation measure.
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returns realized in various portfolios. Additionally, I compare the differences in ex-ante

misvaluation estimates to the differences in realized CAPM alphas, and assess the

economic significance of mispricing regarding its persistence and the market segments

it influences.

Following the asset pricing literature (e.g., Fama and French (2015)), I sort stocks into

quantile portfolios based on their misvaluation measure, α̂i,t. Portfolios are constructed

at the end of June each year, using available data up to that point, and are rebalanced

monthly based on value-weighting by market capitalization.13 The holding period for

each portfolio is 12 months. Table 3 summarizes the results. The ex-ante misvaluation

measures on top of the table show the average of the the sorting variables (divided by

12) of each of the portfolios.

The results in Table 3 strongly support the hypothesis that misvaluation due to CDR

biases is related to stock mispricing. First, Panel A shows that the most overvalued

stocks (“High” misvaluation) experience significantly lower realized CAPM alphas. The

difference in realized CAPM alpha between the most and least overvalued portfolios is

0.8% per month (9.6% annually), with a t-statistic of 5. Panel B confirms that this spread

in alpha corresponds to a similar spread in realized returns, where the most overvalued

stocks underperform by 0.7% per month (8.4% annually). The Fama-French 5-factor

alpha spread is 0.69% per month (8.28% annually), also statistically significant.14

Moreover, as Panel C reveals, the ex-ante spreads in α̂i,t, which amounts to 12.91%

(1.08% × 12), is driven primarily by the variations in the ICC estimates (Πi,t), instead

of the objective discount rates (µi,t) in these portfolios. Indeed, the spread in the ICC

estimates between the high and low portfolio amounts to -12.46% per ann, while the

spreads in the objective discount rates is less than 1%. Additionally, the panel also

13Equal-weighted portfolio results, presented in E.4, show larger spreads in CAPM alphas.
14it is worth noting that all but the highest α̂i,t portfolios exhibit negative realized CAPM alphas,

despite value-weighted CAPM alphas theoretically summing to zero. This anomaly is driven by two
factors: (1) firms with higher analyst coverage, which are more likely to have valid misvaluation
measures, tend to exhibit lower returns on average (Diether, Malloy, & Scherbina, 2002; Hong, Lim, &
Stein, 2000); and (2) stocks with higher misvaluation tend to be larger firms, which distorts the overall
CAPM alpha distribution. Detailed data on firm characteristics are provided in Appendix C, Table 9.
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shows that the most overvalued portfolios tend to consist of smaller firms. As pointed

out in van Binsbergen and Opp (2019), anomalies appearing in only small firms and do

not persistence over time have less real economic significance. Next, I examine next

whether the effect is concentrated only among smaller stocks and how persistent the

mispricing is.

Table 3: Pre-estimated Misvaluation (α̂i,t) Sorted Portfolios and Realized Average Stock
Returns (1986-06 to 2019-12)

The table presents the statistics related to portfolios sorted based on the misvaluation measure created in Section 3.2.4. All numbers
are expressed in percentages unless otherwise stated. Returns and alphas are based on monthly frequency.
Stocks are sorted into quantile portfolios based on the misvaluation measure α̂i at the end of June each year, using the available
information up to that point. Portfolios are rebalanced every month based on firms’ market capitalization (value weighted). “Low”
denotes the portfolio with lowest α̂i,t. “High-Low” denotes the excess returns of a portfolio that goes long on stocks with the
highest α̂i,t and short on those with the lowest α̂i,t.
Panel A presents the average monthly misvaluation, α̂i,t/12 associated with each of the portfolios
Panel B presents statistics related to portfolio returns. “mean ex.ret” are the monthly returns over three-month treasury rates; “SE”
are standard errors which are shown in brackets. ”SR” are monthly Sharpe Ratios. “FF-5 alpha” denotes Fama-French 5-factor
alphas. “num_stocks” is the average number of stocks included in the portfolio over time.
Panel C presents characteristics (value weighted) associated with each of the portfolios. µi,t and Πi,t are the objective discount
rates (beta times 6.4% and the ICC, respectively.

Low 2 3 4 High High - Low

Panel A: Ex ante Misvaluation vs. Realized Portfolio CAPM Alpha

Ex ante Misvaluation

α̂i,t/12 -1.19 -0.61 -0.46 -0.32 -0.12 1.08

Realized Portfolio Realized Portfolio CAPM Alpha

CAPM alpha -0.80 -0.39 -0.26 -0.09 0.01 0.80
SE CAPM alpha (0.14) (0.10) (0.09) (0.06) (0.06) (0.16)

Panel B: Realized Portfolio Return Statistics

mean ex.ret -0.03 0.27 0.33 0.48 0.66 0.70
SE ex.ret (6.12) (4.93) (4.56) (4.24) (4.85) (3.29)
SR -0.01 0.05 0.07 0.11 0.14 0.21

FF-5 alpha -0.63 -0.34 -0.41 -0.23 0.06 0.69
SE FF-5 alpha (0.11) (0.09) (0.08) (0.06) (0.06) (0.13)

Panel C: Portfolio Characteristics

Mkt.Cap (Million) 15379.69 33550.85 38340.65 47129.95 88655.92 73276.23
µi,t 7.14 6.22 6.26 6.29 7.59 0.45
Πi,t 21.46 13.51 11.77 10.14 9.00 -12.46
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4.3.3 Evaluating the Economic Significance of Mispricing

The Persistence of Misvaluation I find the CDR-induced misvalaution is persistent.

First, the persistence of the misvaluation measure, α̂i,t, is reflected in the low

turnover of the misvaluation-based trading strategy. Table 4a shows that the aver-

age monthly turnover for both the long and short sides is around 2%, or less than

24% annually. Compared to strategies examined by Novy-Marx and Velikov (2015),

this places the misvaluation strategy among the lowest turnover categories, similar

to profitability-based portfolios and only slightly above size-based portfolios. This

suggests that transaction costs are unlikely to erode the CAPM alpha generated by the

strategy.

Moreover, misvaluation persists in stock prices well after portfolio formation. Stocks

in the most overvalued portfolios continue to underperform, while those in the least

overvalued portfolios outperform for extended periods. Table 4b shows that even

after holding periods of over 60 months, the CAPM alpha of the High-Low portfolio

remains statistically significant. The return spread decreases by 0.21% per month from

the 12-month to 60-month holding period, which is consistent with the high persistence

of the misvaluation measure as discussed in Section 4.3.1.

For value-weighted portfolios (Panel A), persistence primarily stems from the

continued underperformance of stocks that are heavily overvalued due to CDR biases.

In equally weighted portfolios (Panel B), both the long and short sides show sustained

outperformance and underperformance, suggesting a potential interaction between

firm size and the misvaluation measure. This interaction is explored further in the

following subsection.
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Table 4: The Persistence of Misvaluation

This table illustrates the persistence of misvaluation and its long-term effect on asset prices. A
pooled panel regression based on annual data shows that α̂i,t has an AR(1) coefficient of 0.948,
with standard errors of 0.006 (clustered by firm and year), indicating a high level of persistence.
Panel (a) reports the annualized turnover of portfolios sorted by misvaluation, where monthly
turnover is multiplied by 12 to get annualized values. Panel (b) presents the CAPM alphas,
both value- and equal-weighted, of portfolios sorted by α̂i,t, rebalanced at the end of June each
year, from 1986-06 to 2018-12. The CAPM alphas are estimated by regressing the portfolio
excess returns on market returns, using the universe of stocks for which α̂i,t is available. This
selection accounts for the tendency of stocks with higher analyst coverage to have negative
CAPM alphas.

(a) Portfolio Turnover: Misvaluation-Sorted Portfolios

Portfolio short-side 2 3 4 long-side avg.long.short

ann.turnover 28.56% 36.44% 31.80% 27.43% 19.28% 23.92%

(b) Holding Period Returns of Misvaluation-Sorted Portfolios

portfolio holding periods (in month)

12 24 36 48 60 72

Panel A: CAPM alphas of value-weighted portfolios

low αi -0.612 -0.524 -0.524 -0.593 -0.461 -0.568
[t-stat] [-4.212] [-3.356] [-3.323] [-3.663] [-3.399] [-3.529]

high αi 0.147 0.092 0.082 0.096 0.071 0.071
[t-stat] [2.775] [1.793] [1.782] [2.262] [1.603] [1.841]

High - Low 0.760 0.616 0.606 0.689 0.531 0.638
[t-stat] [4.646] [3.573] [3.543] [3.964] [3.56] [3.755]

Panel B: CAPM alphas of equal-weighted portfolios

low αi -0.626 -0.588 -0.642 -0.639 -0.627 -0.632
[t-stat] [-2.877] [-2.719] [-2.964] [-2.943] [-2.931] [-2.91]

high αi 0.384 0.368 0.352 0.355 0.343 0.351
[t-stat] [3.376] [3.215] [3.263] [3.293] [3.278] [3.395]

High - Low 0.984 0.929 0.954 0.969 0.930 0.943
[t-stat] [5.827] [5.47] [5.569] [5.638] [5.773] [5.524]

Misvaluation in Different Size Segments of the Market I find that CDR-induced mis-

pricing is present even among the largest companies in the stock market, which is
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economically significant given that large firms dominate the market by capitalization.

This implies that the mispricing channel suggested by the CDR hypothesis affects a sub-

stantial portion of the overall market, further demonstrating its economic significance.

Table 5 presents the results from a 3x3 double sort based on firm size and misvalua-

tion. Among the smallest companies, the spread in CAPM alphas between the most and

least overvalued portfolios is 1.08% per month (12.96% per year). Even in the largest

segment of the market, where the average market capitalization exceeds $26 billion, the

spread remains at 0.63% per month (7.56% per year), with a highly significant t-statistic

close to 5.

In addition, I further assess the economic significance of the CDR-misvaluation in

the S&P 500 universe, which consists of the largest U.S. companies, accounting for

about 80% of U.S. market capitalization as of September 2020. The results in Table

15 of Appendix E.5 show that even within this universe, the spread in CAPM alphas

between the most and least overvalued stocks is 0.39% per month (4.68% per year).

Moreover, the Fama-French 5-factor alpha (FF-5) is higher, at 0.53% per month, due to

the portfolio’s strong negative loading on the small-minus-big (SMB) factor.
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Table 5: Mean Excess Returns of Size and Misvaluation Sorted Portfolios (Value Weighted, 1986-06 to 2018-12)

This table presents the returns and characteristics for 3x3 portfolios independently sorted based on the misvaluation measure,
α̂i,t, as defined in Equation (4), and market capitalization as of June of the previous year. All returns, alphas, and standard errors
are reported on a monthly basis and expressed as percentages. “1_1” refers to the portfolio with the lowest market capitalization
and the lowest misvaluation (α̂i,t), while “3_1” refers to portfolios with the highest market capitalization and the lowest α̂i,t. The
portfolios are value-weighted monthly.
“SE” represents standard errors (in brackets). “mean ex.ret” denotes monthly returns in excess of three-month Treasury rates.
“SR” refers to monthly Sharpe Ratios. “FF-5 alpha” denotes Fama-French 5-factor alphas. “num_stocks” represents the average
number of stocks in the portfolio.
Post-formation portfolio characteristics include: “Π” (the implied cost of capital), “µ” (the average beta times 0.064).

stats 1_1 1_2 1_3 high-low.small 2_1 2_2 2_3 high-low.mid 3_1 3_2 3_3 high-low.large

mean ex.ret 0.33 0.92 1.41 1.08 0.08 0.58 1.07 0.99 0.05 0.36 0.6 0.56
SE ex.ret (6.86) (6.26) (7) (2.48) (6.48) (5.54) (5.81) (2.09) (5.48) (4.35) (4.57) (2.68)

SR 0.05 0.15 0.2 0.43 0.01 0.1 0.18 0.48 0.01 0.08 0.13 0.21

CAPM beta 1.26 1.14 1.25 -0.01 1.28 1.1 1.17 -0.12 1.14 0.94 1.02 -0.12
SE CAPM beta (0.05) (0.04) (0.05) (0.03) (0.04) (0.03) (0.03) (0.02) (0.03) (0.02) (0.01) (0.03)
CAPM alpha -0.44 0.22 0.64 1.08 -0.73 -0.1 0.36 1.07 -0.65 -0.22 -0.02 0.63

SE CAPM alpha (0.21) (0.19) (0.22) (0.13) (0.16) (0.14) (0.14) (0.1) (0.11) (0.07) (0.04) (0.13)

FF-5 alpha -0.39 0.15 0.56 0.95 -0.74 -0.23 0.25 0.97 -0.39 -0.39 0 0.39
SE FF-5 alpha (0.1) (0.09) (0.13) (0.13) (0.08) (0.06) (0.07) (0.1) (0.1) (0.07) (0.04) (0.12)

num_stocks 429.1 208.07 134.39 225.19 281.74 256.84 116.49 274.87 372.7
ME (million) 219.77 245.87 264.56 912.54 972.94 1024.18 26798.68 46560.25 79038.81

Π 0.17 0.12 0.1 0.18 0.12 0.1 0.17 0.12 0.09
µ 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.06 0.07
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4.4 CDR Hypothesis and Cross-Sectional Anomalies

This section evaluates Prediction 4 of the CDR hypothesis. Specifically, I investigate

the extent and the mechanism through which the CDR hypothesis can account for

anomalies noted in the literature. To achieve this, I first construct a factor-mimicking

portfolio based on the misvaluation implied by the CDR and subsequently select a set

of anomalies to analyze.

Constructing the Misvaluation Factor To explain anomaly portfolio returns, I construct

a factor-mimicking portfolio based on the misvaluation measure. I follow a procedure

similar to Fama and French (2015). Specifically, I perform independent 3-by-3 sorts

based on market capitalization and α̂i,t. Within each size tercile (small, mid, and large-

cap stocks), I create a long-short portfolio by going long on stocks with the highest α̂i,t

and short on stocks with the lowest α̂i,t. The CDR factor is defined as:

CDRt =
1
3
(Rhigh,small

t + Rhigh,mid
t + Rhigh,big

t )

− 1
3
(Rlow,small

t + Rlow,mid
t + Rlow,big

t ) (6)

Table 6 and Figure 2 provide the return statistics and cumulative returns of the CDR

factor, respectively. The factor exhibits an annual volatility of 6.3% and a mean return

of 10.8%. The majority of this return comes from the short leg, which holds the most

overvalued stocks.

The cumulative return graph demonstrates that the strong performance of the

CDR factor is not concentrated in any specific period over the past 33 years, further

confirming the persistence of the misvaluation effect, as discussed in the previous

section.

Choosing Anomalies I select portfolios sorted on profitability, asset growth, market

beta, idiosyncratic volatility, and cash flow duration. I use these anomalies to demon-
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Figure 2: Cumulative Returns of the CDR Factor (In Log Scale)
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Table 6: Return Statistics CDR Factor

Notes: Sample period is 1986-07-01 to 2018-12-31. Stocks are sorted independently
into 3 by 3 terciles based on the market capitalization the previous June and the α̂i,t
at the end of each June. The portfolios are rebalanced each month based on market
capitalization. The CDR factor is constructed by

CDRt =
1
3

Rhigh
t − 1

3
Rlow

t

where Rhigh
t = 1

3(Rhigh,small
t + Rhigh,mid

t + Rhigh,big
t − 3R f

t ) and Rlow
t = 1

3(Rlow,small
t +

Rlow,mid
t + Rlow,big

t − 3R f
t ).

CDR low α̂ high α̂

Annualized Return 0.108 -0.004 0.110
Annualized Std. Dev. 0.063 0.208 0.190
Annualized Sharpe 1.704 -0.021 0.578

strate whether the channels suggested by the CDR are indeed at work, i.e. whether the

characteristics associated with these anomalies are consistent with the two fundamental

channels suggested by the CDR. I briefly discuss the motivation for choosing these

anomalies here.

First, beta (see Fama & French, 1992) and volatility anomalies (Ang, Hodrick, Xing, &

Zhang, 2006; Haugen & Heins, 1975) have garnered significant attention for challenging

the traditional positive risk-return relationship and the CAPM framework. This has

led to an extensive body of research attempting to explain these so-called "low-risk"

anomalies (Black, 1992; Frazzini & Pedersen, 2014; Schneider, Wagner, & Zechner, 2020).

Second, I consider profitability (Fama & French, 2015; Hou, Xue, & Zhang, 2015;

Novy-Marx, 2013) and asset growth anomalies (Cooper et al., 2008; Fama & French,

2015; Hou et al., 2015). Profitability positively predicts returns, while asset growth

negatively predicts returns. Recent research shows these anomalies can explain much of

the variation in cross-sectional returns (Fama & French, 2016; Hou et al., 2015). Theories

explaining these anomalies are both behavioral (Bouchaud et al., 2019) and rational

(Hou et al., 2015).

Finally, the cash flow duration factor (Dechow, Sloan, & Soliman, 2004b; Gonçalves,
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2019; Weber, 2018) negatively predicts future stock returns. This factor is theoretically

significant because it relates to the term structure of equity and links macro-finance

theories to the time-series and cross-section of returns (Binsbergen & Koijen, 2015;

Croce, Lettau, & Ludvigson, 2014; Lettau & Wachter, 2007; Santos & Veronesi, 2010).

Furthermore, to demonstrate the extent to which the CDR hypothesis can help us

understand mispricing in the cross-section, I consider a broader set of anomalies as

discussed in Stambaugh and Yuan (2017), along with the two composite mispricing

factors. These anomalies are widely studied in both academic literature and practice

due to their relevance to key financial theories and persistent empirical performance.15

These factors, constructed from 11 anomalies, are shown to have strong explanatory

power over numerous anomalies uncovered in the literature. I assess whether the

CDR factor explains the returns of these composite mispricing factors as well as the

individual anomalies they are based on.

4.4.1 Explaining Five Prominent Anomalies Through Two Fundamental Channels

The CDR hypothesis predicts that the CAPM alphas of individual assets should be fully

explained by the CDR factor. To test this, I construct long-short anomaly portfolios

based on five characteristics and regress their returns on the market excess return and

the CDR factor, as defined in Equation (6):

Ri
t = αi + βi

CDRCDRt + βi
m(Rm

t − R f ) + ϵi
t (7)

Under the CDR hypothesis, all alphas should be jointly zero:

HCDR
0 : αi = 0 ∀i = 1, . . . , N

I test this hypothesis using the Gibbons-Ross-Shanken (GRS) test and also evaluate the

15The well-known “value” and “size” anomalies are not included because, in the post-1986-06 sample,
they do not exhibit significant CAPM alphas.
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Table 7: Anomalies Portfolio Alpha/Beta Before/After Controlling for CDR Factor

Sample period is 1986-07-01 to 2018-12-31. In Panel A, the GRS test statistics are presented, which test
the null hypothesis that all αis in Equation 7 are jointly zero under the CAPM or the model where
market factor together with CDR factors are included. Panel B presents the tests for individual assets
in Equation 7. Panel B1: the long-short anomaly portfolios are regressed on market excess returns
over 3 month treasuries. Panel B2: long-short anomaly portfolios are regressed on (value-weighted)
market excess returns and CDR factor defined in Equation (6). “beta” are measured using the last
5 years of monthly returns; “prof” are operating profitability defined in Fama and French (2015);
“res.var” are measured using 60 days of daily returns and Fama-French 3-factor model; “asset.growth”
are the change in total assets from the fiscal year ending in year t-2 to the fiscal year ending in
t-1, divided by t-2 total assets at the end of each June using NYSE breakpoints; “cf.dur” are cash
flow duration measure defined in Dechow et al. (2004a), a composite measure based on sales
and book values. Except for the “cf.dur”, all other portfolios are downloaded from Ken French’s
website and are long-short (value-weighted) portfolios constructed by subtracting the portfolio
with the lowest decile of beta, var, res.var, asset growth by the highest decile and subtracting the
highest profitability portfolio by the lowest profitability portfolio. Decile portfolios of “cf.dur” are
downloaded from Michael Weber’s website; the portfolios end on 2014-06-30 and are equally weighted.

Panel A: GRS. Test Results

Model CAPM Mkt + CDR

GRS-stat 5.422 1.003
P-value 0.000 0.416

Panel B: Tests on Single Anomaly Portfolios

beta res.var prof asset.growth cf.dur

Panel B1: CAPM alpha of anomaly portfolios

CAPM Alpha (%) 0.565 1.246 0.721 0.488 1.261
t-statistics [2.288] [3.777] [3.593] [2.909] [4.124]

CAPM Beta -1.046 -0.971 -0.456 -0.177 -0.432
t-statistics [-18.8] [-13.063] [-10.077] [-4.688] [-6.471]

Panel B2: CAPM alpha of anomaly portfolios after controlling for CDR factor

CAPM Alpha (%) -0.129 -0.114 0.174 0.085 0.296
t-statistics [-0.484] [-0.337] [0.799] [0.466] [0.926]

CAPM Beta -0.983 -0.849 -0.406 -0.141 -0.345
t-statistics [-18.013] [-12.243] [-9.137] [-3.759] [-5.393]

Loading on CER 0.748 1.467 0.590 0.434 1.036
t-statistics [5.706] [8.807] [5.522] [4.815] [6.804]
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individual alphas of the anomaly portfolios.

To ensure robustness and avoid replication errors, I use official sources for the

anomaly portfolios. Specifically, I source beta, variance, and residual variance-sorted

portfolios from Ken French’s website and cash flow duration-sorted portfolios from

Michael Weber’s website.16,17 Additionally, I validate my results using data and code

provided by A. Y. Chen and Zimmermann (2022).18

The results, shown in Panel A of Table 7, strongly support the hypothesis. The GRS

test statistic for the CDR factor is just over 1, with a p-value of 0.42, compared to 5.4

under the CAPM, indicating that the CDR factor fully explains the joint CAPM alphas

of all five anomaly portfolios.

Examining individual anomalies in Table 7, the standalone portfolio alphas become

statistically insignificant when the CDR factor is included. Notably, the loadings on the

CDR factor vary across anomalies. Portfolios associated with idiosyncratic volatility

(“res.var") and cash flow duration (“cf.dur") have the largest loadings, at 1.467 and

1.036, respectively, while asset growth and profitability (“prof.") exhibit considerably

lower loadings.

The CDR hypothesis predicts these differences arise from variations in exposure to

two fundamental channels: discount rate volatility and expected cash flows. To test

this, I examine the pairwise correlations between the firm-level characteristics driving

the anomalies and the two fundamental channels identified by the hypothesis.

Figure 3 reveals patterns consistent with the CDR hypothesis. Idiosyncratic volatility

(“ivol") and equity duration (“equity.dur") are most correlated with beta volatility and

long-term growth estimates, which proxy for the two fundamental channels. Moreover,

“ivol" is more strongly correlated with beta volatility, while “equity.dur" is more corre-

16Betas are estimated using five years of monthly returns; variances are calculated from the last 60 days
of daily returns; residual variances are estimated using 60 daily returns and the Fama-French 3-factor
model.

17Details are discussed in Dechow et al. (2004a) and Weber (2018).
18I re-run the related codes to replicate the anomalies from the website sources. I I use firm-level

anomaly signals generated by the code of A. Y. Chen and Zimmermann (2022) for certain tests, including
the correlation graph in Figure 3.
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lated with long-term growth, aligning with intuition. These findings further validate

the mechanism through which the CDR hypothesis explains anomaly returns.

Figure 3: Correlations Between CDR-implied Misvaluation (“alpha") and Firm-
Characteristics

4.4.2 The Explaination Power of the CDR Factor: the Mispricing Factors of Stambaugh

and Yuan (2017)

I further investigate the extent to which the CDR factor can explain return anomalies

beyond the five examined earlier. Stambaugh and Yuan (2017) identify 11 anomalies

in the literature and construct two mispricing factors (SY1 and SY2) that outperform

the factor models of Fama and French (2015) and Hou et al. (2015) in explaining cross-

sectional average returns. I test whether the single misvaluation factor derived from

the CDR hypothesis can explain the CAPM alphas of these two mispricing factors and

their underlying 11 anomalies, 9 of which were not covered in the earlier analysis.
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Figure 4: CAPM Alphas of Long-Short Anomaly Portfolios Before and After Controlling for the CDR Factor

This figure plots the CAPM alphas for two mispricing factors from Stambaugh and Yuan (2017) alongside 11 anomalies used to construct these factors, as well as the duration, beta, and
residual variance anomalies. Alphas are presented before and after controlling for the CDR factor.
The sample period spans July 1986 to December 2016. “CAPM” represents the intercept from regressions of long-short anomaly portfolio returns on market excess returns over the three-month
Treasury rate. “CAPM + CDR” represents the intercept after including the CDR factor, as defined in Equation (6). Error bars indicate two standard deviations above and below the estimates.
Long-short anomaly portfolios labeled in capital letters are sourced from Robert Stambaugh’s website. “beta,” “inv,” “ivol,” and “prof” are from Ken French’s website, and “dur” is from
Michael Weber’s website. “ACCRUAL” refers to the accrual anomaly of Sloan (1996); “beta” is calculated using five years of monthly returns; “prof” denotes operating profitability as defined
in Fama and French (2015); “ivol” is measured using 60 days of daily returns and the Fama-French 3-factor model; “inv” denotes asset growth as in Fama and French (2015) and Cooper et al.
(2008); and “cf.dur” denotes cash flow duration as defined in Weber (2018). “COMPOSITE_ISSUE” refers to composite equity issuance from Daniel and Titman (2006), while “STOCK_ISSUE”
refers to equity issuance as in Loughran and Ritter (1995). “DISTRESS” represents distress risk, as defined in Campbell, Hilscher, and Szilagyi (2008), and “OSCORE” is Ohlson’s O-score
from Ohlson (1980). “NOA” refers to net operating assets, as in Hirshleifer, Hou, Teoh, and Zhang (2004); “MOMENTUM” is defined in Jegadeesh and Titman (1993); “INVASSET” is the
investment-to-assets ratio from Titman, Wei, and Xie (2013). “SY1” denotes the “MGMT” factor from Stambaugh and Yuan (2017), which includes net stock issues, composite equity issuance,
accruals, net operating assets, asset growth, and investment-to-assets ratios. “SY2” denotes the “PERF” factor from Stambaugh and Yuan (2017), which includes distress, O-score, momentum,
profitability, and return on assets.
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The results show that the CDR factor provides substantial explanatory power for this

broader set of anomalies, encompassing 16 in total. Figure 4 reports the CAPM alphas

and standard errors for 14 anomalies (including the 11 from Stambaugh and Yuan

(2017)) and the two mispricing factors, before and after including the CDR factor. In all

cases, the CDR factor reduces the CAPM alphas. For 13 of the 16 anomalies, the CAPM

alphas become statistically insignificant after accounting for the CDR factor. Notably,

the CDR factor fully explains the first mispricing factor (SY1), which is primarily

associated with longer-term anomalies, such as net equity issuance and accruals.

However, the CDR factor struggles to explain the second mispricing factor (SY2),

which is linked to momentum and distress anomalies. These anomalies are char-

acterized by short-term mispricing and high portfolio turnover, making them less

compatible with the long-term nature of the CDR factor. This result is consistent with

the hypothesis that the CDR factor primarily captures valuation errors stemming from

underestimated long-term discount rate dynamics, while momentum and distress are

driven by shorter-term market forces.

4.5 Expectation Errors and Firm Fundamentals

Finally, I test Prediction 5 of the hypothesis on cross-sectional expectation errors. The

analysis begins with a discussion of the empirical properties of sell-side analysts’ return

forecast errors (described in Section 3.2.1), which serve as a proxy for CDR investors’

biases.

Figure 5 illustrates the empirical distribution of firm-level return expectation biases

from sell-side analysts, highlighting the mean and median (indicated by the bars). The

distribution is right-skewed, with analysts’ subjective return expectations being, on

average, positive at the firm level. These patterns align with the properties of the

misvaluation measure α̂i,t discussed in Section 4.3.1.
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Figure 5: Distribution of average firm-level analyst forecast errors of 12-month ahead
returns
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Notes: The top and bottom panel plot the empirical probability distribution function (PDF) and the cumulative distribution function

(CDF) of average sell-side analysts’ return forecast errors, respectively. The dark bar in the middle represents the median while the

gray bar with a cross represents the mean. The x-axis is the value of the average biases while the y-axis denotes probability in

percentage points. The forecast errors are constructed based on sell-side analysts’ 12-month price targets subtracted by realized

average returns. More details about how the return expectations are computed are documented in Appendix IA.C. Firm-level

forecast errors are averaged over time to arrive at an average forecast error for each firm. The sample period is from 1999-Q2 to

2018-Q4.

This finding is consistent with prior research documenting the optimistic biases

in analysts’ price targets.19 While much of the literature attributes this optimism to

career incentives and conflicts of interest (Hong & Kubik, 2003), the CDR hypothesis

provides an alternative explanation. According to CDR, analysts may systematically

19Studies documenting positive biases in analysts’ forecasts include Brav and Lehavy (2003) and
Engelberg et al. (2019).
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overestimate returns because they fail to account for time-varying discount rates—an

oversight stemming from cognitive biases rather than intentional motives.

Using these firm-level subjective expectation errors, I test the prediction that cross-

sectional variations in analysts’ return expectation biases are driven by discount rate

volatility and expected cash flow growth, I estimate the following panel regression:

Biasi,t+1 = αt + αind,i + b1σ̂βi,t + b2k̂i,t + δ′Controli,t + ϵi,t (8)

where Biasi,t+1 represents quarterly analysts’ forecast biases; αt and αind,i are time

and industry fixed effects; σ̂βi,t is the firm’s 250-day beta volatility (used as a proxy

for discount rate volatility); and k̂i,t represents analysts’ long-term growth estimates,

used as a proxy for payout horizon. Control variables include firm size (log market

capitalization), book-to-market ratio, profitability, asset growth, and idiosyncratic

volatility. Additionally, I run a cross-sectional regression using the time-series averages

of the variables involved, without fixed effects, to provide a clearer interpretation of

the R2.

The CDR hypothesis predicts positive estimates for b1 and b2, indicating that firms

with higher discount rate volatility and higher expected cash flow growth will exhibit

greater expectation biases.

Table 8 presents the regression results. The first three columns display results

for quarterly forecast biases ( f wd.1q.bias), with columns (1) and (2) focusing on beta

volatility and cash flow growth separately, while column (3) includes both variables

along with controls. Columns (4) and (5) present results based on time-series averages,

both with and without controls, to highlight the importance of beta volatility and cash

flow growth in explaining the variation in biases.

The results strongly support the CDR hypothesis. The estimates for beta volatility

are positive and highly significant across all specifications. In column (1), beta volatility

has a coefficient of 0.284, and this effect remains robust even after controls are included
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in column (3), where the coefficient is 0.181. Similarly, cash flow growth is positive

and significant, with a coefficient of 0.340 in column (2) and 0.230 in column (3). The

time-series averages in columns (4) and (5) confirm these findings, showing that both

beta volatility and cash flow growth contribute significantly to the variation in analysts’

forecast biases. The coefficients of 0.812 and 0.760, respectively, in column (4) are

associated with an adjusted R2 of 16.5% for the model without controls. Even after

including controls, the significance of both variables remains high, underscoring their

importance.

Table 8: The Cross-Sectional Determinants of Average Firm-Level Forecast Errors of
Sell-Side Analysts

The dependent variable is the next quarterly forecast bias (Biasi,t+1) in columns (1) to
(3), while columns (4) and (5) use time-series averages of forecast biases at the firm level.
Beta volatility (σ̂βi,t) is the 250-day volatility of the firm’s conditional beta, and cash flow
growth (k̂i,t) represents analysts’ long-term growth estimates. Control variables include
firm size (log market capitalization), book-to-market ratio, profitability, asset growth,
and idiosyncratic volatility. Fixed effects include date and industry, and standard
errors are clustered by firm and industry. The sample period is from 1999-Q2 to 2018-Q4.

Dependent variable:

fwd.1q.bias mean.bias

(1) (2) (3) (4) (5)

beta.vol 0.284∗∗∗ 0.181∗∗∗ 0.812∗∗∗ 0.379∗∗∗

(0.030) (0.030) (0.098) (0.112)

cf.growth 0.340∗∗∗ 0.230∗∗∗ 0.760∗∗∗ 0.528∗∗∗

(0.048) (0.041) (0.173) (0.132)

Control No No Yes No Yes
Fixed Effects Date+Ind. Date+Ind. Date+Ind. No No
Cluster S.E. Date+Firm Date+Firm Date+Firm Ind. Ind.
Observations 69,455 60,746 60,746 2,223 2,223
Adjusted R2 0.229 0.237 0.245 0.165 0.258

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

These findings are consistent with the CDR hypothesis, which suggests that analysts’

biases in return expectations are driven largely by firms’ discount rate volatility and
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expected cash flow growth.

5 Conclusion

To bridge the disconnect between investors’ subjective beliefs and objective asset

pricing moments, this paper proposes and tests a novel hypothesis: some investors

systematically underestimate the dynamics of discount rates when valuing individual

stocks. This hypothesis is motivated by recent findings that investors’ subjective return

expectations are too rigid at the aggregate level and the evidence from textbooks and

valuation practices that investors do not explicitly consider dynamics of discount rates

when valuing individual stocks.

I find direct evidence supporting the hypothesis: analysts’ subjective discount

rate estimates are significantly less volatile than objective discount rate estimates,

resulting the latter to negatively predict future individual stock returns. By formalizing

this hypothesis, I also find this hypothesis can explain cross-sectional variation in

stock returns and expectation errors. Constructing an intuitive empirical misvaluation

measure, I show that the measure explains not only the CAPM alphas of individual

stocks but also a wide range of well-known return anomalies. Overall, the paper

shows evidence strongly supports the hypothesis, which has direct implications for

cross-sectional stock pricing.

Future research could investigate potential mechanisms, such as investor learning

processes or behavioral biases, to better understand the origins of this hypothesis.
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Appendix A Biased Return Expectations and Equilibrium As-

set Prices: A More Formal Analysis

I study a multi-asset economy in which some investors with biased return expectations

(CDR investors) trade with risk-averse rational investors (arbitrageurs). CDR investors

take up θ ∈ (0, 1) share of the economy, so arbitrageurs are left with 1 − θ. Both of

these investors live for two periods; in the first period they invest in the risky securities

and have a risk-free rate r f to maximize their terminal wealth. There are N risky assets,

each of which pays a dividend of Di
t for asset i in the next period. The number of

shares outstanding of these risky assets is x∗ = (x1, x2, ..., xN)′, and risk-free assets are

in unlimited supply.

Both CDR investors and arbitrageurs have the same utility function with the same

risk-aversion coefficient, γ. The key difference is that the CDR investors have subjective
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return expectations, Ẽ(.), that are biased, or

Ẽt(Ri
t+1) = Et(Ri

t+1) + bi
t (9)

In particular, the CDR investors solve the problem

maxω

N

∑
i=1

ωiPi
t

[
Ẽt(Ri

t+1)− R f

]
− γ

2
ω′Σtω (10)

where

Ri
t+1 =

Pi
t+1 + Di

t+1

Pi
t

While the arbitrageurs solve the problem

maxy

N

∑
i=1

yiPi
t

[
Et(Ri

t+1)− R f

]
− γ

2
y′Σty (11)

Denote ω∗ = (ω1, ω2, ..., ωN)′ and y∗ = (y1, y2, ..., yN)′ the optimal demand of the

CDR investors and the arbitrageurs, respectively. The market clears, and we have

θω∗ + (1 − θ)y∗ = x∗ (12)

The equilibrium asset prices and expected returns are outlined in Proposition 1.

Proposition 1. The multi-asset economy features biased investors and arbitrageurs whose

return expectations are governed by Equation (9) and who solve optimization problems in (10)

and (11), respectively. With market clearing conditions (12), the equilibrium asset price for

asset i is

Pi
t =

1
1 + R f − θbi

t

[
Et(Pi

t+1 + Di
t+1)− γei′Σtx∗

]
(13)

where ei is a vector of zeros with 1 on the ith entry. The expected return of asset i is

Et(Ri
t+1)− R f = θ(−bi

t + βi
tb

M
t ) + βi

t

[
Et(RM

t+1)− R f

]
(14)
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where bM
t = ∑N

i=1
xiPi

∑j xjPj bi
t is the market-level expectation bias of CDR investors, βi

t =

Covt(Ri
t,R

M
t )

Vart(RM
t )

(the CAPM beta in its usual definition), and RM
t = ∑N

i=1
xiPi

∑j xjPj Ri
t is the value-

weighted market return.

Proof. See Appendix IA.A.

The results in Proposition 1 confirm the earlier intuition about how biases in the

return expectation could cause mispricing in equilibrium. As shown in Equation

(13), the more CDR investors in the economy, that is, the higher value of θ, the more

serious the mispricing potentially becomes. Furthermore, when fixing the share of CDR

investors, the higher the bias the CDR investors have for the return expectation of an

asset, the higher its price and the lower its expected return, as shown in Equation (14).

This is intuitive as the CDR investors will demand more of such an asset, leading to a

lower expected returns.

Equation (14) reveals that the return expectation bias on the asset level as well as the

market level together contribute to the non-zero CAPM alpha. This is intuitive as the

CDR investors’ irrational demand on the asset level would also lead to an equilibrium

impact on the market level.

Appendix B Cross-sectional Variations in CDR-implied Biases

and Stock Returns

I use a simple valuation model to demonstrate how CDR-implied biases would vary

with firm-level fundamental characteristics. To focus the analysis on the consequence

of under-estimating discount rate volatility, the model features a discount rate that is

dynamic but uncorrelated with firms’ expected cash flows. In Internet Appendix IA.B

I show that this valuation model is consistent with an economy where the stochastic

discount rate factor is driven by aggregate sentiment shocks that is uncorrelated with
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the aggregate consumption growth, similar in spirit to models proposed in De Long,

Shleifer, Summers, and Waldmann (1990).

B.1 Average Valuation Bias and Firm Characteristics: An Example

Consider an asset i that provides a cash flow at a future time k, denoted Xi,t+k. To value

this asset, it is necessary to account for the changing discount rates over future periods,

{µi,t+j}j=0,...,k. Therefore, the asset should be valued as follows:20

Vi,t = e−∑k−1
j=0 µi,t+j Et(Xi,t+k). (15)

Conversely, CDR investors erroneously employ a fixed discount rate µ̃i,21 leading

to the valuation

Ṽi,t = e−kµ̃i Et(Xi,t+k). (16)

The discrepancy between the two valuations is given by

bi,t :=
Ṽi,t

Vi,t
= e−k(µ̃i−µi,t), (17)

where µi,t =
∑k−1

j=0 µi,t+j

k represents the average of the future discount rates.

Equation (17) demonstrates that CDR investors experience valuation bias, repre-

sented as bi,t ̸= 1, when their own discount rates deviate from the average of future

discount rates across various time horizons, i.e., ∆µi,t := µ̃i − µi,t ̸= 0. This discrepancy

typically arises because CDR investors assume that future discount rates will remain

constant.

For example, if the term structure of future discount rates is flat, meaning µi,t+j = µi,t

20To simplify the analysis, it is assumed that future cash flows are unaffected by fluctuations in the
discount rate, allowing us to focus solely on the implications of the CDR assumption.

21The fixed discount rate assumption represents an extreme version of the hypothesis, suggesting
underestimation.
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for all j, then bi,t = e−k(µ̃i−µi,t). This implies that CDR investors will overvalue the asset

when the actual discount rate temporarily spikes, consistent with Prediction 2 above.22

As I show in Appendix A,23 when a fraction θ of investors have biased expectations

the expected excess return for an asset i is given by:

Et(Ri,t+1)− R f = θ(−bi,t) + βi,t

[
Et(RM

t+1)− R f

]
. (18)

Thus, the CAPM alpha of an asset i is inversely related to the expectation bias bi,t of the

CDR investors:

αi,t = θ(−bi,t). (19)

This leads to Prediction 3.

Besides, Equations (17) and (18) also suggest that the CDR-induced biases are related

to firm-level characteristics, which gives rise to Prediction 4 and 5.

To see this, we consider the unconditional expectation of the biases based on Equa-

tion (17), assuming that future discount rates are i.i.d. and follow a normal distribution:

µi,t+j ∼ N(µi,t, σ2
µi
), ∀j = 0, . . . , k (20)

The average bias across different firms is given by:

E(bi,t) = E
[
e−k(µ̃i−µi,t)

]
= ekE(∆µi,t)e

k2
2 σ2

µi (21)

This equation shows the average bias on the firm level relates to the average difference

between discount rates used by CDR investors and the objective rates, E(∆µi,t). The

sign and magnitude of this difference depend on the subjective discount rates used by

CDR investors.
22In more general cases, such as an upward-sloping term structure of discount rates, µi,t will be higher

than µi,t.
23In this appendix, we study a multi-asset economy where biased investors (CDR investors) interact

with rational, risk-averse investors (arbitrageurs). This setup, based on Kozak et al. (2018), applies to any
form of biased return expectations, not just CDR biases.
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Furthermore, this equation confirms our intuition: on average, CDR-induced misval-

uation varies across firms due to two main factors, discount rate volatility and payout

horizon k. As the equation shows, even if CDR investors have no average bias in their

rate estimation (i.e., E(∆µi,t) = 0), underestimating volatility still causes cross-sectional

differences in misvaluation and CAPM alphas due to k and σµi .

Specifically, higher discount rate volatility (σ2
µi

) and longer payout horizons (k)

both contribute to greater overvaluation by CDR investors. These results motivate the

Prediction 4 and 5. Notice that although we consider a single cash flow occuring k

periods into the future, similar logic applies to assets with multiple future cash flows,

where the payout horizon k can be represented by the asset’s cash flow duration. For

such assets, the total value Vi,t is the sum of the present values of all future cash flows

k periods from now, V(k)
i,t : Vi,t := ∑∞

k=1 V(k)
i,t . The timing of cash flows can be captured

by a measure of cash flow duration (Dechow et al., 2004a; Weber, 2012), which is the

weighted average time until the present value is recovered: Duri,t := ∑∞
k ω

(k)
i,t × k =

∑∞
k

V(k)
i,t

Vi,t
× k.

Appendix C Detailed Data Descriptions

In sum, the estimation of firm-level equity requires five firm-level variables, one

industry-level variable, and one aggregate variable. The firm-level variables are: three

analysts’ consensus forecasts for a firm’s earnings of the current fiscal year (FY1), the

next fiscal year (FY2), and the fiscal year thereafter (FY3); one analysts’ consensus

long-term forecast (LTG); and one payout ratio, which is the ratio of the firm’s previous

year total dividend to the firm’s net income. The industry-level variable is the average

LTG based on 48 Fama-French industry classifications. The aggregate variable is the

long-term average of GDP growth, which goes down from 7% to 6% over the 35 years

in the sample. Based on these five inputs, I compute the implied cost of capital qi,t

and the entire term structure of a firm’s payout ratio PBi,t+s based on (22), which is a
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function of the last year’s payout ratio and aggregate GDP growth rate and the qi,t.

In the IBES monthly summary history file, I use analyst earnings per share (EPS)

estimates for fiscal year 1, fiscal year 2, and fiscal year 3 (fpi = 1, 2, 3) and the long-term

growth estimates to take full advantage of the term structure of analyst forecasts.24

Furthermore, I require both fiscal year one and fiscal year two consensuses to be based

on no less than three available analyst estimates and at least two estimates for FY3

consensus25 in order to be included in the sample. I only use the latest monthly consen-

sus estimates within each calendar quarter: March, June, September, and December

to obtain firm-quarter consensus estimates. In addition, the firms included in the

sample need to be U.S. firms whose reporting currency is in U.S. dollars. For the base

case, I consider the median estimates as the consensus estimate, but my results do not

change when using the mean estimates. To obtain estimates for total dollar earnings,

the EPS estimates are multiplied by shares outstanding from daily CRSP data as of

the date the EPS estimates were announced. In addition, I adjust for stock splits for

the shares-outstanding data. To merge the IBES database with the CRSP database, I

first match them using the 8-digit historical CUSIP. Additionally, I match firms whose

ticker and/or company names are the same and those who have the same 6-digit

historical CUSIP. In terms of timing, I match the quarterly IBES data with the monthly

CRSP-COMPUSTAT merged by calendar quarter. In all asset pricing tests, I require

the analyst estimates from the IBES summary file to be announced at least one quarter

before the date that the returns are observed. Since the IBES summary file’s statistical

period is in the middle of each month, the analyst expectation information is lagged by

about three months and two weeks.

To compute the payout ratio, I collect the common dividends (DVC) and net income

(IBCOM) as well as the firm’s historical industry SIC code from COMPUSTAT. If a

24Further horizons are available; however, the coverage is much poorer.
25The reason for using two FY3 estimates is that the coverage for FY3 is considerably poorer. My

results are actually stronger when requiring three FY3 estimates; however, the average number of firms
covered will be only 60% of the sample in the base case.
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firm’s net income is negative, I replace it with 6% of the asset value (AT). I winsorize the

payout ratio so that it is also between zero and one. For other fundamental data and the

price-related variables I use the CRSP-COMPUSTAT Merged (Annual) data. I include

common shares (share codes 10 and 11) in the CRSP database traded on NYSE/AMEX

and NASDAQ exchanges with the beginning-of-month prices above one dollar. When

forming portfolios based on fundamental variables, I follow the convention in the

literature (for example Fama and French (2015)), and lag the annual fundamental

information of each firm for at least six months and assume that the information on all

the firms’ fundamental data is observed by end of June each year. Annual and monthly

stock returns, as well as market prices and gross and net of dividends are obtained

from CRSP and are adjusted for stock delistings. The market capitalization (ME) of a

stock is its price times the number of shares outstanding, adjusted for stock splits, using

the cumulative adjustment factor provided by CRSP, which is also used to compute a

firm’s total expected earnings and actual earnings.

Appendix D Estimating the Implied Cost of Capital

D.1 Methodology: The ICC Model of Pástor et al. (2008)

I follow the ICC model of Pástor et al. (2008) in estimating the implied cost of capital.

L. Chen, Da, and Zhao (2013) details the way they calculate the ICC model in the cross

section, and I therefore follow the procedure outlined in their appendix to estimate the

ICC at the stock level.

1. Collect firm-level analyst earnings projections from the IBES monthly summary

file. Include firm-level earnings projections at the end of March, June, September,

and December for the current fiscal year (the next annual reporting date), the next

fiscal year, and the long-term growth forecast (LTG);

2. Estimate the firm-level Implied Cost of Capital (ICC) model. This involves assum-
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Table 9: Returns and Alphas of the Universe with Available Estimates of Misvaluation
(Analyst’s Forecasts)

Sample period 1985-07 to 2018-12. Monthly value-weighted excess re-
turns of the universe with the available firm misvaluation measure α̂i

t, or
“vw.mkt.rf.analyst”, are regressed on constant (Column 1), value-weighted
excess returns of the market based on the CRSP universe (Column 2), and
Fama-French five-factor returns downloaded from Ken French’s website (Column 3).

Dependent variable:

vw.mkt.rf.analyst
avg.ex.ret CAPM.alpha FF5.alpha

(1) (2) (3)

mkt.rf 1.016∗∗∗ 1.028∗∗∗

(0.005) (0.006)

smb 0.001
(0.009)

hml 0.041∗∗∗

(0.011)

cma 0.0003
(0.016)

rmw 0.028∗∗

(0.011)

Constant 0.005∗∗ −0.001∗∗∗ −0.002∗∗∗

(0.002) (0.0002) (0.0002)

Observations 402 402 402
R2 0.000 0.989 0.990
Adjusted R2 0.000 0.989 0.990
Residual Std. Error 0.045 (df = 401) 0.005 (df = 400) 0.005 (df = 396)
F Statistic 35,728.420∗∗∗ (df = 1; 400) 7,837.528∗∗∗ (df = 5; 396)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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ing a firm-level long-term growth rate as well as a plowback rate (or 1− payout

rate):

(a) Assuming

Pt =
15

∑
k=1

FEt+k(1 − bt+k)

(1 + qt)k +
FEt+16

qt(1 + qt)15 = f (ct, qt) (22)

where Pt is the stock price, FEt+k is the earnings forecast k years ahead, bt+k

is the plowback rate (1−payout), and qt is the ICC.

(b) Estimate FEt+k :

i. FEt+1 and FEt+2 are proxied by the current fiscal year and the next fiscal

year IBES analyst summary file data. FEt+3 = FEt+2(1 + LTGt)

A. Assuming the individual firm-level earnings growth rates to revert

to industry growth forecast (LTGInd
t ) by year t + 16:

gt+k = gt+k−1 × exp[log(LTGind
t+3/LTGt+3)/13]

∀4 ≤ k ≤ 15

g16 = gGDP
t ,

FEt+k = FEt+k−1(1 + gt+k) ∀4 ≤ k ≤ 16

where gGDP
t is the GDP growth rate using an expanding rolling

window since 1947.

(c) Estimate bt+k :

i. bt+1 and bt+2 are estimated from the most recent net payout ratio for each

firm. The net payout ratio is common dividends (DVC in COMPUSTAT)

to net income (item IBCOM). If net income is negative, replace it with

6% of assets.26

26Notice that about 50% of the firms do not pay dividends in the last year. As a result, during the first
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ii. bt+k, 3 ≤ k ≤ 16 is assumed to be

bt+k = bt+k−1 −
bt+2 − bss

t
15

(23)

where bss
t = gGDP

t /qt

(d) The qt is then backed out by solving Eq. (22) and (23) together numerically.

When there exist multiple roots, choose the root that is closest to the risk-free

rate. Exclude any stock whose price is below one dollar. Winsorize the

sample at 1% and 99%. Notice that by assuming the steady-state plowback

ratio, we implicitly impose the constraint that

qt ≥ gGDP
t

since in the steady-state, the plowback ratio can not exceed one.

two years, the plowback ratio is one. This does not mean that the projected earnings for the first two
years have no impact on the estimation of the implied cost of capital qt. Since FEt+k are first calculated
using the first two to three years of earnings projections together with the firm- and industry-level LTG,
as long as any path during the first 15 years contains a non-zero payout ratio, the first three years of
projections will have an impact on the estimation of the ICC.
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D.2 Summary Statistics of the ICC and Input Variables

Table 10: Summary Statistics

(a) Empirical distributions of variables

statistic Pi b_1_2 pb_7 EP_1 EP_2 EP_3 LTG g_ind

1 mean 0.130 0.990 0.848 0.070 0.095 0.114 0.169 0.168
2 std 0.058 0.057 0.073 0.113 0.151 0.187 0.089 0.055
3 std cs 0.056 0.055 0.072 0.111 0.149 0.184 0.086 0.047
4 std ts 0.030 0.031 0.042 0.065 0.065 0.076 0.054 0.026
5 min 0.068 0.589 0.603 -0.153 0.004 0.014 0.040 0.048
6 p25 0.094 1 0.807 0.033 0.045 0.054 0.110 0.130
7 median 0.116 1 0.848 0.053 0.066 0.076 0.150 0.159
8 p75 0.144 1 0.896 0.076 0.090 0.104 0.200 0.195
9 max 0.428 1 0.993 0.876 1.216 1.512 0.500 0.351

(b) AR(1) coefficients

variable Pi b_1_2 pb_7 EP_1 EP_2 EP_3 LTG g_ind

1 AR(1) 0.920 0.943 0.882 0.897 0.950 0.956 0.893 0.946
2 std 0.005 0.009 0.004 0.008 0.005 0.005 0.005 0.010

(c) Correlations between variables

Pi pb_7 b_1_2 EP_1 EP_2 EP_3 LTG g_ind

Pi 1 -0.746 0.023 0.611 0.747 0.784 0.409 0.336
pb_7 1 0.461 -0.352 -0.417 -0.434 -0.351 -0.284
b_1_2 1 -0.006 0.006 0.010 0.079 0.102
EP_1 1 0.873 0.821 -0.136 -0.107
EP_2 1 0.970 -0.070 -0.063
EP_3 1 -0.030 -0.042
LTG 1 0.511

g_ind 1

Note: Statistics are calculated over the whole sample. Firm-level variables are winsorized at 1% and 99%. “Pi” is the implied
constant discount rate (ICC); “b_1_2” is the plowback ratio from the last year; “pb_7” is the implied plowback ratio in year seven.
“Ek/P”, k = 1, 2, 3 are the fiscal year k earnings consensus estimates divided by the current market capitalization; “LTG” denotes
long-term growth forecasts; “g_ind” denotes industry long-term growth estimates where industries are defined based on the 48
Fama-French classifications. In Panel 10a, “std” denotes the standard deviations for the variables over the entire sample, “std cs”
and “std ts” are the average cross-sectional standard deviations over time and the time-series standard deviations over different
firms, respectively. AR(1) coefficients are estimated by regressing the current value of the variable on its respective one-quarter
lagged value based on the whole sample. Standard errors for the AR(1) coefficients are clustered by firm quarter.
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Appendix E Robustness Checks

E.1 Return Predictability Controlling for Biases in Analysts’ Earnings Fore-

casts

An alternative hypothesis to the CDR for the return predictability of the misvaluation

measure is that biases in analysts’ earnings forecasts—utilized in constructing the

measure—may drive the observed results. Systematic biases in investors’ cash flow

expectations could inherently lead to return predictability. If analysts share these

biases, as suggested in previous research ((Bordalo et al., 2024; La Porta, 1996; So, 2013;

Van Binsbergen, Han, & Lopez-Lira, 2023)), the return predictability of the misvaluation

measure might partly stem from predictable errors in analysts’ cash flow (earnings)

forecasts.

To test whether the predictability of the misvaluation measure is primarily driven

by underestimating discount rate volatility, I conduct Fama-Macbeth regressions con-

trolling for variables that capture cash flow forecast biases. Table 11 presents these

results.

Column (1) shows that the misvaluation measure derived from the CDR hypothesis

strongly predicts future returns, with a coefficient of 0.056, statistically significant at the

1% level. This suggests a 5.6% increase in future monthly returns for each unit increase

in the misvaluation measure.

Column (2) introduces ex-ante analyst forecast biases and long-term growth (LTG)

forecasts and their revisions. Ex-ante analyst biases, based on earnings forecasts for

fiscal years 1 (FY1) and 2 (FY2) and machine-learning methods using large set of

earnings predictors, negatively predict future returns (coefficient = -0.198), aligning

with findings from Van Binsbergen et al. (2023). Consistent with the literature (Bordalo

et al., 2024; La Porta, 1996), LTG and the last 12-month revisions in LTG also have a

negative sign, although it is not statistically significant in our sample after controlling
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for the ex-ante analyst short-term cash flow bias measure.

Column (3) includes both the misvaluation measure and the ex-ante analyst earn-

ings forecast biases for the short-term (FY1 and FY2) and the long-term (LTG and

LTG revisions). The misvaluation measure’s predictive power remains strong, with a

coefficient of 0.056, suggesting that the CDR-based misvaluation is not primarily driven

by predictable biases in analysts’ earnings forecasts.

To alleviate the concern that ex-ante forecast biases are influenced by a particular

econometric model, I also include as controls the future realized values of LTG revisions

and short-term forecast errors in Column (4) and Column (5), respectively, besides

additional controls—such as analysts’ forecast revisions, forecast dispersion, gross

profitability, and firm size. The misvaluation measure maintains a significant predictor

for future returns, albeit reduced, predictive coefficient of 0.028 (significant at the 1%

level) in Column (5).
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Table 11: Return Predictability of Misvaluation Controlling for Earnings Forecast Biases

“fwd.1m.ex.ret" is the next month excess return over risk-free rate. “mis.val" is the
misvaluation measure constructed in Section 3.2.4. “LTG" is the monthly analysts’
long-term forecasts. “ex.ante.bias" is analysts’ ex-ante predictable bias from their
FY1 and FY2 consensus forecasts (Van Binsbergen et al., 2023). “FY1.fcst.error" and
“FY2.fcst.error" are future realized forecast errors from analysts’ FY1 and FY2 earn-
ings consensus forecasts. Controls include the analysts’ forecast revision (Haugen &
Heins, 1975), the disparity in long and short term earnings forecasts (Da & Warachka,
2011) and firms’ profitability (Novy-Marx, 2013), along with firms’ market capitalization.

Dependent variable:

fwd.1m.ex.ret

(1) (2) (3) (4) (5)

mis.val 0.056∗∗∗ 0.056∗∗∗ 0.054∗∗∗ 0.028∗∗∗

(0.006) (0.007) (0.009) (0.009)

ex.ante.bias −0.198∗∗ −0.149∗

(0.078) (0.078)

LTG −0.001 0.007 0.032∗∗ 0.004
(0.012) (0.012) (0.014) (0.012)

delta.lag12m.ltg −0.006 −0.005
(0.008) (0.008)

delta.fwd12m.ltg 0.138∗∗∗

(0.014)

FY1.fcst.error −0.827∗∗∗

(0.036)

FY2.fcst.error −0.199∗∗∗

(0.017)

Add.Controls No No No Yes Yes
Observations 484,319 451,896 451,857 262,668 270,503
R2 0.184 0.230 0.234 0.258 0.287

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note that part of the realized forecast errors may include information that was

not observable when the misvaluation measure was constructed. Furthermore, future

forecast revisions and forecast errors could also stem from shocks that affect both the
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realized discount rate forecasts and cash flow forecasts. Nevertheless, even though the

coefficients on future revisions in LTG and future realized forecast errors for the FY1 and

FY2 estimates are highly significant—and thus consistent with the notion that biases

in cash flow expectations drive some portion of realized returns—the CDR-induced

misvaluation measure still remains a strong predictor of future returns.

Overall, these findings suggest that the return predictability of the misvaluation

measure is unlikely to arise from forecast biases in analysts’ earnings projections,

supporting the CDR hypothesis as the primary driver. These results are consistent with

the conclusion from Wang (2015).

E.2 Predicting Analyst Return Forecast Biases Controlling for Earnings

Forecast Biases

The CDR hypothesis predicts that both discount rate volatility and cash flow payout

horizon should positively predict subjective return expectation errors in the cross-

section. In Section 4.5, we tested this prediction using firms’ conditional beta volatility

and analysts’ long-term growth forecasts (LTG) as proxies for discount rate volatility

and cash flow payout horizon, respectively. The results, presented in Table 8, are

consistent with the CDR hypothesis.

One concern with the positive relationship between analysts’ LTG forecasts and

future return expectation errors is the possibility of a common bias term in analysts’ cash

flow forecasts that could be driving this relationship, rather than the underestimation

of discount rate dynamics.

To address this concern, I conducted additional robustness tests to show that biases

in analysts’ cash flow forecasts are not the primary drivers behind the results in Table 8.

Column (1) of Table 12 shows the results when replacing analysts’ LTG with the

equity duration measure introduced by Dechow et al. (2004a). This measure captures

the cash flow duration of individual stocks, with higher equity duration indicating a
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longer cash flow payout horizon. Importantly, since equity duration is constructed

using statistical models to forecast cash flow, it is free from the systematic biases that

may be present in analysts’ LTG forecasts. The results show a statistically significant

positive relationship between equity duration and future analysts’ return forecast

errors, consistent with the CDR hypothesis. This suggests that biases in LTG are not the

primary reason driving the results in Table 8.

In Columns (2), (3), and (4), I further include controls for analysts’ ex-ante pre-

dictable biases, as well as analysts’ future realized forecast errors for FY1 and FY2,

respectively. The coefficients on beta volatility and equity duration remain positive

and statistically significant, although the magnitude of the beta volatility coefficient

decreases. These findings confirm that analysts’ cash flow forecast biases are not driving

the positive relationships between future return expectation errors and beta volatility or

cash flow payout horizon. Thus, the prediction of the CDR hypothesis remains robust.
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Table 12: Predicting Future Analysts’ Return Forecast Biases Controlling for Earnings
Forecast Biases

The dependent variable is the next quarterly forecast bias (Biasi,t+1). “LTG" is the
monthly analysts’ long-term forecasts.“Equity.Dur" is the equity duration measure from
Dechow et al. (2004a). “ex.ante.bias" is analysts’ ex-ante predictable bias from their
FY1 and FY2 consensus forecasts (Van Binsbergen et al., 2023). “FY1.fcst.error" and
“FY2.fcst.error" are future realized forecast errors from analysts’ FY1 and FY2 earn-
ings consensus forecasts. Controls include the analysts’ forecast revision (Haugen &
Heins, 1975), the disparity in long and short term earnings forecasts (Da & Warachka,
2011) and firms’ profitability (Novy-Marx, 2013), along with firms’ market capitalization.

Dependent variable:
fwd.1q.bias

(1) (2) (3) (4)
beta.vol 0.268∗∗∗ 0.206∗∗∗ 0.153∗∗∗ 0.153∗∗∗

(0.029) (0.031) (0.030) (0.030)

Equity.Dur 0.006∗∗∗ 0.006∗∗∗ 0.007∗∗∗ 0.006∗∗∗
(0.001) (0.002) (0.001) (0.001)

ex.ante.bias 1.819∗∗
(0.836)

FY1.fcst.error −2.339∗∗∗ −2.720∗∗∗
(0.406) (0.257)

FY2.fcst.error 3.570∗∗∗ 4.044∗∗∗
(0.391) (0.278)

Control No No No Yes
Qtr. & Ind. FE Yes Yes Yes Yes
Qtr & Firm Cluster S.E. Yes Yes Yes Yes
Observations 69,346 54,262 52,186 41,831
Adjusted R2 0.231 0.262 0.343 0.373
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E.3 Using Alternative Expected Return Models for Misvaluation Measure

To test the robustness of the return predictability of the CDR-induced misvaluation

measure defined in Sec. 3.2.4, I examine alternative models for estimating dynamic

expected returns when constructing the misvaluation measure. The primary measure

used in the main analysis relies on the conditional-CAPM-beta times a constant risk

premium as a proxy for the objective discount rate (expected return). Here, I replace this

measure with four alternative expected return models commonly used in the literature
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and compute misvaluation as the difference between each alternative measure and the

ICC.

The first alternative measure is the Fama-French six-factor model (“FF-6”) from

Fama and French (2018). I estimate rolling betas for each of the six factors using a

60-month window and multiply them by the factors’ most recent monthly realized

returns to proxy for expected returns. As a second measure, I use the Q-factor model

proposed by Hou et al. (2015), which includes an expected growth factor in place of the

momentum factor used in the FF-6 model. Rolling betas are computed similarly, and

expected returns are derived by applying these betas to realized factor returns.

The third measure is the characteristics-based expected return model (“Char.Based.ER”)

from Lewellen (2014), which directly uses firm characteristics rather than time-varying

betas when computing expected returns. Expected returns are estimated as the fitted

values based on Fama-Macbeth regressions of firm-level future monthly realized re-

turns on firm characteristics (size, book-to-market ratio, and momentum). Finally, I

include the model developed by Lyle and Wang (2015), where expected returns are de-

rived from regressions of future holding period (log) returns on firms’ book-to-market

ratio, return on equity, and prior-month mean squared returns.

Table 13 presents the predictive results for the misvaluation measures using each of

these alternative expected return models. The findings indicate that the misvaluation

measures strongly predict returns across all four models, with the two characteristics-

based models yielding particularly strong results. This aligns with Lee, So, and Wang

(2021), which concludes that characteristics-based measures are often more accurate

proxies for cross-sectional firm-level expected returns.
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Table 13: Return Predictability of Misvaluation Measure Based on Alternative Expected
Return Models

“fwd.1m.ex.ret" is the next month excess return over risk-free rate. Inde-
pendent variables are alterantive measures of the misvaluation, defined as
the difference between expected return models (different each columns) and
the ICC. The different expecgted return models are defined in the text.

Dependent variable:

fwd.1m.ex.ret

(1) (2) (3) (4)

FF-6 0.029∗∗∗

(0.007)

Q-Factor 0.027∗∗∗

(0.007)

Char.Based.ER 0.040∗∗∗

(0.007)

HPR 0.038∗∗∗

(0.007)

Observations 788,153 788,153 788,153 788,153
R2 0.159 0.158 0.151 0.151

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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E.4 Equal-Weighted Portfolio Sorts

Table 14: Pre-estimated Misvaluation (α̂i
t) Sorted Portfolios and Realized Average Stock

Returns (1986-06 to 2018-12, value weighted)

All returns, alphas, and their standard errors are expressed in percentages. Stocks
are divided into quantile portfolios based on the misvaluation measure α̂i at the end of
June each year, using the available information up to that point. Portfolios are rebal-
anced with equal weights every month. “Low” denotes the portfolio with the lowest
α̂i

t. “High-Low” denotes excess returns of a portfolio that goes long on stocks with the
highest α̂i

t and short on stocks with the lowest α̂i
t. “SE” are standard errors which are

shown in brackets. “Mean ex.ret” are monthly returns over three-month treasury rates.
”SR” denotes monthly Sharpe Ratios. “FF-5 alpha” denotes Fama-French 5-factor alphas.
“num_stocks” us the average number of stocks included in the portfolio over time. “Ex Ante
Misvaluation” denotes value-weighted portfolios α̂i

t measured at each end of June. Their
standard errors are measured using Newey-West methods based on four lags (“SE (NW-4)”).

stats Low 2 3 4 High High - Low

Ex Ante Misvaluation -1.8 -0.88 -0.67 -0.5 -0.3 1.5
SE (NW-4) (0.19) (0.32) (0.21) (0.18) (0.15) (0.12)

CAPM alpha -0.63 -0.26 0.07 0.2 0.38 0.98
SE CAPM alpha (0.22) (0.19) (0.13) (0.11) (0.11) (0.17)

mean ex.ret 0.19 0.48 0.76 0.87 1.12 0.94
SE ex.ret (7.22) (6.28) (5.56) (5.23) (5.91) (3.31)

SR 0.03 0.08 0.14 0.17 0.19 0.28

CAPM beta 1.33 1.15 1.12 1.09 1.24 -0.08
SE CAPM beta (0.05) (0.04) (0.03) (0.02) (0.03) (0.04)

FF-5 alpha -0.49 -0.29 -0.05 0.07 0.33 0.79
SE FF-5 alpha (0.15) (0.14) (0.07) (0.06) (0.08) (0.14)

num_stocks 456.68 453.78 456.09 456.09 453

68



E.5 Misvaluation Sorted Portfolios Among S&P 500 Universe

Table 15: Misvaluation (α̂i,t) Sorted Portfolios and Realized Average Stock Returns for
S&P 500 Firms (1986-06 to 2018-12)

This table presents statistics for portfolios sorted by the misvaluation measure α̂i,t (as
defined in Equation (4)) for firms in the S&P 500 universe. All values are expressed as
percentages unless otherwise stated, with returns and alphas reported monthly.
Stocks are sorted into quantile portfolios based on the misvaluation measure, α̂i,t, as
of the end of June each year, using available information up to that point. Portfolios
are rebalanced monthly and value-weighted by market capitalization. “Low” refers to
the portfolio with the lowest α̂i,t, while “High-Low” represents the excess return of a
strategy that is long stocks with the highest α̂i,t and short stocks with the lowest α̂i,t.
“fwd_12m_alpha” refers to the average misvaluation measure 12 months after portfolio
formation.
“CAPM alpha” is calculated by regressing portfolio excess returns on the universe of
S&P 500 stocks with available estimates of α̂i,t.

stats Low 2 3 4 High High - Low

mean ex.ret 0.2 0.39 0.47 0.56 0.65 0.45
SE ex.ret (4.78) (4.53) (4.26) (4.34) (5.13) (2.97)

SR 0.04 0.09 0.11 0.13 0.13 0.15

CAPM beta 0.99 0.96 0.91 0.94 1.11 0.11
SE CAPM beta (0.02) (0.02) (0.02) (0.02) (0.02) (0.03)
CAPM alpha -0.29 -0.08 0.02 0.1 0.1 0.39

SE CAPM alpha (0.1) (0.08) (0.07) (0.07) (0.08) (0.15)

FF-5 alpha -0.42 -0.4 -0.24 -0.2 0.11 0.53
SE FF-5 alpha (0.1) (0.09) (0.08) (0.07) (0.09) (0.15)

ME 43818.98 42726.38 54376.9 60586.93 110437.88
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Internet Appendix

IA.A A Proof of Proposition 1

Solving the first-order condition of (10) and (11), we have the optimal demands given

by

ω∗ =
1
γ

Σ−1
t

[
E(Pt+1 + Dt+1) + BtPt − Pt(1 + R f )

]
(24)

where Bt is a diagonal matrix with biases bi
t being on the ith row and ith column, and

y∗ =
1
γ

Σ−1
t

[
E(Pt+1 + Dt+1)− Pt(1 + R f )

]
(25)

respectively.

Market clearing conditions imply that

θω∗ + (1 − θ)y∗ = x∗

or

θ
1
γ

Σ−1
t

[
E(Pt+1 + Dt+1) + BtPt − Pt(1 + R f )

]
+ (1 − θ)

1
γ

Σ−1
t

[
Et(Pt+1 + Dt+1)− Pt(1 + R f )

]
= x∗

θBtPt + Et(Pt+1 + Dt+1)− Pt(1 + R f ) = γΣx∗

[
(1 + R f )I − θBt

]
Pt = Et(Pt+1 + Dt+1)− γΣtx∗

which leads to

Pi
t =

1
1 + R f − θbi

[
Et(Pi

t+1 + Di
t+1)− γei′Σtx∗

]
which is Equation (13) of Proposition (1).
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The expected returns follow

Et(Ri
t+1)− R f = −θbi

t + γ
1
Pi

t
e′iΣtx∗

= −θbi
t + γ

1
Pi

t
e′iCovt(Pt+1 + Dt+1, Pt+1 + Dt+1)x∗

= −θbi
t + γCovt(Ri

t+1, Pt+1 + Dt+1)x∗

= −θbi
t + γCovt(Ri

t+1, (Pt+1 + Dt+1)
′x∗)

= −θbi
t + γCovt(Ri

t+1, RM
t+1)P′

t x∗ (26)

Now define the market-cap weight for asset i as

ωi
M =

xiPi
t

∑j xjPj
t

and pre-multiply Equation (26) by the weights and sum over different assets to obtain

RM
t+1 − R f = −θbM

t + γVart(RM
t+1)P′

t x∗

which gives

γVart(RM
t+1)P′

t x∗ = RM
t+1 − R f + θbM

t

P′
t x∗ =

Et(RM
t+1 − R f )

γVart(RM
t+1)

(27)

Substituting Equation (27) into (26), we have

Et(Ri
t+1)− R f = −θbi

t + γCovt(Ri
t+1, RM

t+1)
Et(RM

t+1 − R f )

γVart(RM
t+1)

= θ(−bi
t + βi

tb
M
t ) + βi

t

[
Et(RM

t+1)− R f

]

the last equation is Equation (14) in Proposition (1).
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IA.B An Economy with a Persistent Sentiment-Driven SDF

I show the valuation example used in B.1 is consistent with an economy with sentiment

investors, whose sentiment variation become a major source of priced risk that drives

the time variation of the discount rate.

Consider a representative investor whose preferences depend on both consumption

Ct and a sentiment state Zt, with period utility:

u(Ct, Zt) =
C1−γ

t
1 − γ

e−λZt ,

where γ > 0 is the coefficient of relative risk aversion, and λ ̸= 0 governs how

sentiment affects effective discounting or marginal utility.

The investor maximizes expected discounted utility and their first-order condition

yields the stochastic discount factor from period t to t + 1:

Mt+1 = β

(
Ct+1

Ct

)−γ

e−λ(Zt+1−Zt).

where β ∈ (0, 1) denotes the time-discounting parameter.

To simplify the analysis, assume aggregate consumption grows at a constant rate:

Ct+1

Ct
= g

and the sentiment factor follows an AR(1) process:

Zt+1 = ϕZt + εt+1, |ϕ| < 1, E[εt+1] = 0,

with εt+1 the shock to sentiment and is independent of consumption growth.

For any asset with payoff Xi,t+1 and price Pi,t, the pricing equation is:

Pi,t = Et[Mt+1Xi,t+1] =⇒ 1 = Et[Mt+1Ri,t+1],
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where Ri,t+1 = Xi,t+1/Pi,t is the gross return. The risk-free rate R f ,tt satisfies R−1
f ,t =

Et[Mt+1].

To focus, we assume any asset’s realized returns are only driven by shocks to a

priced factor Ft+1, and this innovation only comes from the sentiment shock εt + 1, i.e.

Ft+1 := εt+1, and

Ri,t+1 − R f ,t = bi,tFt+1 + ei,t+1,

where ei,t+1 are i.i.d idiosyncratic shocks.

Given this setup, applying the pricing equation 1 = Et[Mt+1Ri,t+1], we have the

conditional expected return, or discount rate µi,t to be

µi,t := Et[Ri,t+1] = R f ,t + βi,t(Zt)λt(Zt)Var(Ft+1),

where λt(Zt) reflects the time-varying price of sentiment risk. Both βi,t(Zt) and λt(Zt)

depend on the current sentiment state Zt, yielding a time-varying, state-dependent

expected return that is uncorrelated with aggregate consumption shocks or firms’ cash

flow shocks.

IA.C Measuring Analyst Return Expectations Using Analyst

Price Targets

Firm-level analyst return expectations are constructed using a bottom-up approach

based on analyst-level return expectations per analyst issuance.

I collect a single issuance of price targets from individual analysts’ 12-month27 price

targets for individual firms from the IBES unadjusted database and then match it with

the closing price from CRSP on the date the price target was issued28 to compute return

27Other horizons are available, though the coverage is poor.
28In case the issuance date falls on a weekend, the last Friday prices are used. In case the issuance falls
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expectations with price targets for individual firms. The expected returns are computed

by dividing the analysts’ price targets by the daily closing price on the day the estimate

was issued and then subtracting one.29 or

µA
i, f ,d =

PA,12
i, f ,d

Pf ,d
− 1

where PA,12
i, f ,d is the price target of analyst i for firm f , issued on day d. The superscript

12 denotes the 12-month ahead estimate. Notice this methodology ensures there is no

mechanical relation between mean estimated expected returns and the level of prices.

On each issuing date the analyst has the freedom to pick their own price target since

they observes the prices.

Firm-level return expectations are constructed together with the stop file provided

by IBES to ensure that individual estimates are not stale. IBES keeps track of the

activeness of the individual estimates and provides a stop file for price targets.30 I

merge the point-in-time analyst-level expected return file with the stop file on price

targets to exclude estimates that analysts and IBES have confirmed to be no longer

valid. Furthermore, to avoid stale estimates, I further restrict the estimates to be no

older than 90 days when entering mean consensus estimates.31

I construct weekly firm-level consensus expected returns by taking the mean of

all active analyst-level forecasts, although using the median makes no discernible

difference for the main results. I drop analyst-level estimates that are greater than

on a holiday, the previous business day closing prices are used.
29The same formula is used in Brav and Lehavy (2003) and Da and Schaumburg (2011).
30According to IBES, this stop file “includes stops applied to estimates that are no longer active. This

can result from several events, e.g. an estimator places a stock on a restricted list due to an underwriting
relationship or the estimator no longer covers the company. Prior to June 1993, actual stop dates did not
exist in the archive files used to create the Detail History. An algorithm was developed to determine
the date when an estimate became invalid if, for example, a merger between companies occurred or an
analyst stopped working for a firm, etc. Estimate that are not updated or confirmed for a total of 210
days, the estimate is stopped.”

31Engelberg et al. (2019) allows the estimates to be at most 12 months old, in case the estimates are not
covered by the stop file, although the choice makes little difference for the main results, as verified in
that paper’s appendix.
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five standard deviations away from the mean estimates, and I winsorize the entire

analyst-level database by 1% and 99% before calculating the firm-level consensus. I

take the mean of the available expected return estimates for each firm by the end of

Saturday each week, or

µA
f ,w = ∑

i
µA

i, f ,w/I f

where I f is the number of analysts for firm f at week w. For most of the application

of the paper, I use firm-level return estimates based on monthly data, which is the

consensus data on the last Saturday before each calendar month end.
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